
Correction des exercices du Chapitre 6 Terminale Spécialité

Table des matières
1 Exemples du cours 2

Exemple 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Exercices du manuel 3
27 page 177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
40 page 178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
42 page 178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
55 page 180 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
75 page 183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
77 page 183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
86 page 183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
104 page 188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Autres exercices 9



1 Exemples du cours
Exemple 12

Soit f la fonction définie sur D = R \ {1} par f(x) = x2 + 1

x− 1
et Cf sa courbe représentative.

• Montrer que pour tout x ∈ D, f(x) = x+ 1 +
2

x− 1
.

Pour tout x ∈ D,

x+ 1 +
2

x− 1
=

(x+ 1)(x− 1)

x− 1
+

2

x− 1

=
x2 − 1 + 2

x− 1

=
x2 + 1

x− 1

= f(x)

• Déterminer la limite en −∞ et +∞ de f(x)− (x+ 1).
Pour tout x ∈ D,

f(x)− (x+ 1) = x+ 1 +
2

x− 1
− (x+ 1) =

2

x− 1

Par somme de limites, lim
x→+∞

(x− 1) = +∞ donc, par quotient de limites, lim
x→+∞

f(x)− (x+ 1) = 0 .

• Quelle propriété peut-on en déduire quant à Cf et la droite ∆ : y = x+ 1 ?
Graphiquement, on en déduit donc que l’écart vertical entre la droite d’équation y = x+1 et Cf tend vers 0 lorsque
x tend vers +∞.
On dit que la droite d’équation y = x+ 1 est une asymptote oblique à Cf au voisinage de +∞.

• Représenter ce résultat sur un graphique.



2 Exercices du manuel
27 page 177
On applique les propriétés 8 et 9 du cours sur la limite à l’infini d’un polynôme et d’une fonction rationnelle.
1. lim

x→+∞
(x2 − 3x+ 1) = lim

x→+∞
x2 = +∞.

lim
x→−∞

(x2 − 3x+ 1) = lim
x→−∞

x2 = +∞.

2. lim
x→+∞

(−x5 + 10x4 + x2 + x) = lim
x→+∞

−x5 = −∞.
lim

x→−∞
(−x5 + 10x4 + x2 + x) = lim

x→−∞
−x5 = +∞.

3. lim
x→+∞

x2 + 2x− 3

x+ 1
= lim

x→+∞

x2

x
= lim

x→+∞
x = +∞.

lim
x→−∞

x2 + 2x− 3

x+ 1
= lim

x→−∞

x2

x
= lim

x→−∞
x = −∞.

4. lim
x→+∞

3x2 − 1

x2 − 2
= lim

x→+∞

3x2

x2
= lim

x→+∞
3 = 3.

lim
x→−∞

3x2 − 1

x2 − 2
= lim

x→−∞

3x2

x2
= lim

x→−∞
3 = 3.

40 page 178

1. Graphiquement, Df = R \ {−3; 2}.
2. On peut conjecturer le tableau de variations et les limites ci-dessous.

x

f

−∞ −3 −1

2
2 +∞

22

+∞

−∞

f

(
−1

2

)
f

(
−1

2

)

−∞

+∞

22

3. Cf semble admettre une asymptote horizontale d’équation y = 2 en −∞ et +∞.
Cf semble admettre deux asymptotes verticales d’équation x = −3 et x = 2.

42 page 178

1. On a lim
x→−∞

f(x) = 0, lim
x→+∞

f(x) = 0, lim
x→−1

f(x) = −∞, lim
x→2
x<2

f(x) = −∞ et lim
x→2
x>2

f(x) = +∞.

2. Cf admet une asymptote horizontale d’équation y = 0 en −∞ et +∞.
Cf admet deux asymptotes verticales d’équation x = −1 et x = 2.

3. La courbe ci-dessous est une représentation graphique possible de la fonction f .



55 page 180
1. On a lim

x→0
ex = 1.

D’une part lim
x→0
x<0

(ex − 1) = 0− donc, par quotient de limites, lim
x→0
x<0

f(x) = −∞ .

D’autre part, lim
x→0
x>0

(ex − 1) = 0+ donc, par quotient de limites, lim
x→0
x>0

f(x) = +∞ .

2. On a lim
x→3

(x2 + 1) = 10.

Or, pour tout réel x, x2−9 = (x−3)(x+3) donc lim
x→3
x<3

(x2−9) = 0− d’où, par quotient de limites, lim
x→3
x<3

g(x) = −∞

.
D’autre part, lim

x→3
x>3

(x2 − 9) = 0+d’où, par quotient de limites, lim
x→3
x>3

g(x) = +∞ .

3. On a lim
x→−1

(x3 − 4) = −5.
Or, pour tout réel x, on a x2+3x+2 = (x+1)(x+2) donc lim

x→−1
x<−1

(x2+3x+2) = 0− donc, par quotient de limites,

lim
x→−1
x<−1

h(x) = +∞ .

D’autre part, lim
x→−1
x>−1

(x2 + 3x+ 2) = 0+ donc, par quotient de limites, lim
x→−1
x>−1

h(x) = −∞ .

4. On a lim
x→2

(x2 − 2x− 1) = −1 et lim
x→2
x<2

(x3 − 8) = 0− donc, par quotient de limites, lim
x→2
x<2

k(x) = +∞ .

D’autre part, lim
x→2
x>2

(x3 − 8) = 0+ donc, par quotient de limites, lim
x→2
x>2

k(x) = −∞ .

75 page 183
D’après le théorème de limite à l’infini d’une fonction rationnelle :

lim
x→+∞

2x2 + 3

3x2 − x
= lim

x→+∞

2x2

3x2
= lim

x→+∞

2

3
=

2

3

lim
x→+∞

2x2 + 5x

3x2 − x
= lim

x→+∞

2x2

3x2
= lim

x→+∞

2

3
=

2

3

On en déduit, d’après le théorème des gendarmes, que lim
x→+∞

f(x) = 2
3 .



77 page 183

Limite finie : Théorème des gendarmes
Limite infinie : Théorème de comparaison (et on ne garde qu’une inégalité)

1. Pour tout réel x,

− 1 ⩽ sinx ⩽ 1

⇐⇒ −2 ⩽ 2 sinx ⩽ 2

⇐⇒ x− 2 ⩽ x+ 2 sinx ⩽ x+ 2

Donc, pour tout x > 0,
x− 2

x
⩽ x+ 2 sinx

x
⩽ x+ 2

x

Or, lim
x→+∞

x−2
x = lim

x→+∞
x+2
x = 1 donc, d’après le théorème des gendarmes, lim

x→+∞
f(x) = 1 .

De même, pour tout x < 0,
x− 2

x
⩾ x+ 2 sinx

x
⩾ x+ 2

x

Or, lim
x→−∞

x−2
x = lim

x→−∞
x+2
x = 1 donc, d’après le théorème des gendarmes, lim

x→−∞
f(x) = 1 .

2. Pour tout réel x,
−1 ⩽ cosx ⩽ 1 ⇐⇒ 1 ⩽ 2 + cosx ⩽ 3

Donc pour tout x > 0,
x3 ⩽ (2 + cos(x))x3 ⩽ 3x3

Or, lim
x→+∞

x3 = +∞ donc, d’après le théorème de comparaison, lim
x→+∞

g(x) = +∞ .

De même, pour tout x < 0,
x3 ⩾ (2 + cos(x))x3 ⩾ 3x3

Or, lim
x→−∞

x3 = −∞ donc, d’après le théorème de comparaison, lim
x→−∞

g(x) = −∞ .

3. Pour tout réel x,
−1 ⩽ sinx ⩽ 1 ⇐⇒ x− 1 ⩽ x+ sinx ⩽ x+ 1

Donc, pour tout x > 1,
1

x− 1
⩾ 1

x+ sinx
⩾ 1

x+ 1
car la fonction inverse est strictement décroissante sur ]0;+∞[

Et donc, pour tout x > 1,
x

x− 1
⩾ x

x+ sinx
⩾ x

x+ 1

Or, lim
x→+∞

x
x−1 = lim

x→+∞
x

x+1 = 1 donc, d’après le théorème des gendarmes, lim
x→+∞

h(x) = 1 .

De même, pour tout x < −1,
1

x− 1
⩾ 1

x+ sinx
⩾ 1

x+ 1
car la fonction inverse est strictement décroissante sur ]−∞; 0[

Donc, pour tout x < −1,
x

x− 1
⩽ x

x+ sinx
⩽ x

x+ 1

Or, lim
x→−∞

x
x−1 = lim

x→−∞
x

x+1 = 1 donc, d’après le théorème des gendarmes, lim
x→−∞

h(x) = 1 .

4. Pour tout réel x,

−1 ⩽ sinx ⩽ 1 ⇐⇒ −3 ⩽ 3 sinx ⩽ 3 ⇐⇒ x2 − 3 ⩽ x2 + 3 sinx ⩽ x2 + 3

Or, lim
x→+∞

x2 − 3 = +∞ donc, d’après le théorème de comparaison, lim
x→+∞

k(x) = +∞ .

Et lim
x→−∞

x2 − 3 = +∞ donc, d’après le théorème de comparaison, lim
x→−∞

k(x) = +∞ .



86 page 183
1. D’une part, lim

x→−∞
(x+ 1) = −∞.

D’autre part, lim
x→−∞

ex = 0 donc, par somme de limites, lim
x→−∞

(ex + 3) = 3.

Finalement, par quotient de limites, lim
x→−∞

x+1
ex+3 = −∞

2. Pour tout x ̸= 0,
x+ 1

ex + 3
=

x
(
1 + 1

x

)
ex

(
1 + 3

ex
) =

x

ex ×
1 + 1

x

1 + 3
ex

Or, par croissances comparées, lim
x→+∞

ex
x = +∞ donc, par quotient de limites lim

x→+∞
x
ex = lim

x→+∞
1

ex
x

= 0.

De plus lim
x→+∞

1 + 1
x = 1, et lim

x→+∞
1
ex = 0 donc, par produit puis somme, lim

x→+∞
1 + 3

ex = 1, d’où lim
x→+∞

1+ 1
x

1+ 3
ex

= 1.

D’où, au final, par produit de limites, lim
x→+∞

x+1
ex+3 = 0

3. D’une part, lim
x→−∞

ex = 0 et lim
x→−∞

xex = 0 par croissances comparées.
Par somme de limites , lim

x→−∞
(xex + 2ex − 5) = −5.

D’autre part, lim
x→−∞

e2x = 0 donc, par somme de limites, lim
x→−∞

(e2x − 3) = −3.

En conclusion, par quotient de limites, lim
x→−∞

xex+2ex−5
e2x−3

= 5
3

4. Pour tout x ̸= 0,
xex + 2ex − 5

e2x − 3
=

xex
(
1 + 2

x − 5
xex

)
e2x

(
1− 3

e2x
) =

x

ex ×
1 + 2

x − 5
xex

1− 3
e2x

Par croissances comparées, lim
x→+∞

ex
x = +∞ donc, par quotient de limites lim

x→+∞
x
ex = lim

x→+∞
1

ex
x

= 0.
De plus, lim

x→+∞
ex = +∞ donc, par produit de limites, lim

x→+∞
xex = +∞ et donc, par quotient de limites,

lim
x→+∞

5
xex = 0.

Par somme de limites, lim
x→+∞

(
1 + 2

x − 5
xex

)
= 1.

De plus, lim
x→+∞

e2x = +∞, d’où, par quotient puis par somme, lim
x→+∞

(
1− 3

e2x
)
= 1.

D’où, au final, par quotient puis produit, lim
x→+∞

xex+2ex−5
e2x−3

= 0

104 page 188
1. (a) • lim

x→−∞
1 = 1 lim

x→−∞
−x = +∞ lim

x→−∞
ex = 0

Par somme de limites, on en déduit que lim
x→−∞

g(x) = +∞

• Pour tout x ̸= 0, g(x) = 1 + x

(
ex

x
− 1

)
.

Par croissances comparées, lim
x→+∞

ex

x
= +∞ donc, par somme de limites, lim

x→+∞

(
ex

x
− 1

)
= +∞

De plus, lim
x→+∞

x = +∞ donc, par produit de limites, lim
x→+∞

x

(
ex

x
− 1

)
= +∞.

On en déduit que lim
x→+∞

g(x) = +∞

(b) g est dérivable sur R car c’est la somme de fonctions dérivables sur R.
Pour tout x ∈ R, g′(x) = ex − 1.
Or,

g′(x) ⩾ 0 ⇐⇒ ex − 1 ⩾ 0 ⇐⇒ ex ⩾ 1 ⇐⇒ x ⩾ 0

On en déduit le tableau de variations suivant :



x

g′(x)

g(x)

−∞ 0 +∞

− 0 +

+∞+∞

22

+∞+∞

De plus, g(0) = 1− 0 + e0 = 2.
Ainsi, la fonction g admet un minimum en x = 0 égal à 2.
Par conséquent, pour tout réel x, g(x) ⩾ 2 donc la fonction g est strictement positive sur R .

2. • lim
x→−∞

1 = 1 et lim
x→−∞

x = −∞ donc, par somme de limites, lim
x→−∞

(x+ 1) = −∞

D’autre part, lim
x→−∞

ex = 0+ donc, par quotient de limites, lim
x→−∞

x

ex
= −∞. (ce n’est pas une FI)

Par somme de limites, on en déduit que lim
x→−∞

f(x) = −∞

• Par croissances comparées, lim
x→+∞

ex

x
= +∞ donc, par quotient de limites, lim

x→+∞

x

ex
= lim

x→+∞

1
ex

x

= 0

De plus, lim
x→+∞

(x+ 1) = +∞.

Par sommes de limites, on en déduit que lim
x→+∞

f(x) = +∞

3. f est dérivable sur R car c’est la somme de fonctions dérivables sur R.
Pour tout x ∈ R,

f ′(x) = 1 +
ex − xex

(ex)2
= 1 + e−x − xe−x = e−x (ex + 1− x) = e−xg(x)

4. D’après la question 1. (b), pour tout réel x, g(x) > 0.
De plus, pour tout réel x, e−x > 0.
Par conséquent, pour tout réel x, f ′(x) > 0 donc la fonction f est strictement croissante sur R .

5. On a f(0) = 0 + 1 +
0

e0
= 1 et f ′(0) = e−0 × g(0) = 2.

L’équation réduite de la tangente à C au point d’abscisse 0 est de la forme

y = f ′(0)(x− 0) + f(0)

y = 2x+ 1

6. Pour étudier la position relative de C et T , on étudie le signe de la fonction h, définie sur R, par

h(x) = f(x)− (2x+ 1)

h(x) = x+ 1 +
x

ex
− (2x+ 1)

h(x) =
x

ex
− x

h(x) =
x

ex
(1− ex)

De plus, 1− ex ⩾ 0 ⇐⇒ 1 ⩾ ex ⇐⇒ e0 ⩾ ex ⇐⇒ 0 ⩾ x.
La fonction h admet donc le tableau de signes suivant :



x

x

1 − ex

ex

h(x)

−∞ 0 +∞

− 0 +

+ 0 −

+ +

− 0 −

Ainsi, pour tout réel x, h(x) ⩽ 0, c’est-à-dire f(x)− (2x+ 1) ⩽ 0 ⇐⇒ f(x) ⩽ 2x+ 1.
On en déduit que C est toujours situé en dessous de T sauf en x = 0 où les deux courbes se superposent.
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