Correction des exercices du Chapitre 6 Terminale Spécialité
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1 Exemples du cours

Exemple 12

2
, 1 , .
Soit f la fonction définie sur D =R\ {1} par f(x) = v +1 et €r sa courbe représentative.
x —

= Montrer que pour tout x € D, f(z) =2+ 1+ -1
x —
Pour tout = € D,

2 (x+1)(z—1) 2
x+1+w—1: r—1 +w—1
2 —1+42

z—1
2 +1

z—1

= f(z)

= Déterminer la limite en —oo et 400 de f(z) — (z + 1).
Pour tout = € D,

2 2
f(m)—(x+1)::1:+l+m—(x+l):x_l

Par somme de limites, lim (x — 1) = +oo donc, par quotient de limites, | lim f(z) —(x+1)=0
r—>+00 T—+00

= Quelle propriété peut-on en déduire quant a 6y et ladroite A : y =+ 17
Graphiquement, on en déduit donc que I'écart vertical entre la droite d'équation y = x4 1 et Cy tend vers 0 lorsque
x tend vers +o0.
On dit que la droite d’équation y = = + 1 est une asymptote oblique a C; au voisinage de +oo.

= Représenter ce résultat sur un graphique.
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2 Exercices du manuel

27 page 177
On applique les propriétés 8 et 9 du cours sur la limite a I'infini d’'un polynéme et d'une fonction rationnelle.
1. lim (z2-3z+1)= lim 2?= +oo.
T—r+00 T—r+00
lim (22 -3r+1)= lim 22 = +oo.
T——00 T——00
2. lim (—2%+102* + 22+ 2) = lim —2° = —c0.
r—+00 T—+00
lim (—2% 4+ 102* + 22 +2) = lim —2% = +o0.
T——00 T——00
2 2
2 —
3. lim LH: lim r_ lim z = +oo0.
T—+00 x+1 T—+00 T T—+00
. 22 4+2r—3 . 22 .
lim — = lim — = lim z=—cc.
T——00 x+1 T——00 I T——00
322 — 1 322
4. lim =~ = lim = = lim 3=3
rtoo 12— 9 r—-too T2 T—+00
32° — 1 3a?
lim "2 > = lim "o = lim 3=
z——00 T2 — 9 r——0c0 T2 T——00
40 page 178

1. Graphiquement, Dy =R\ {-3;2}.

2. On peut conjecturer le tableau de variations et les limites ci-dessous.

T —00 -3 —1 2 +00
2
+00 1 +oo
f "\
/ \
2 —00 —00 2
3. ¢ semble admettre une asymptote horizontale d'équation y = 2 en —oo et +o0.
¢y semble admettre deux asymptotes verticales d'équation x = —3 et x = 2.
42 page 178
1. Ona lim f(x)=0, lim f(z)=0, lim f(z)= —oo, lim f(z) = —oco et lim f(z) = +oo.
r——00 T——+00 r——1 2;222 :fB;>22

2. ¢y admet une asymptote horizontale d'équation y = 0 en —o0 et +o0.
¢’y admet deux asymptotes verticales d'équation x = —1 et x = 2.

3. La courbe ci-dessous est une représentation graphique possible de la fonction f.



55 page 180

1. On a lime* =1.

z—0
D'une part lim(e* — 1) = 0~ donc, par quotient de limites, | lim f(z) = —oc0 |
z—0 z—0
<0 <0

D’autre part, lin%(ex — 1) = 0" donc, par quotient de limites, | lim f(z) = +oo |
ﬁ;% >0

2. On a lim (22 + 1) = 10.
r—3

Or, pour tout réel z, 22 —9 = (z—3)(x+3) donc lin"é(;vQ—Q) = 0~ d'ou, par quotient de limites, 1111":15 g(z) = —o0
r— r—
<3 <3

D’autre part, lim (22 —9) = 0*d'ou, par quotient de limites, | lim g(x) = +o0
= =
x>

3. Ona lim (2% —4) = —5.
z——1

Or, pour tout réel z, on a 2+ 3242 = (x+1)(z+2) donc lim (z2+3x+2) =0~ donc, par quotient de limites,
p

rz——1
r<—1
lim h(x) = +o0
z——1
r<—1
D'autre part, lim (22 + 3z +2) = 0" donc, par quotient de limites, | lim h(z) = —o0
%%—% mg—%
r>— r>—

4. On a lim(2? — 22 — 1) = —1 et lim(2® — 8) = 0~ donc, par quotient de limites, | lim k(z) = +o0

T—2 T—2 T—2
<2 <2
D’autre part, lim (2® — 8) = 0% donc, par quotient de limites, | lim k(x) = —oo
= =
x> x

75 page 183

D’apres le théoréeme de limite a I'infini d'une fonction rationnelle :

. 22243 o222 _ 2

lim = lim — = lim - =-—
t5Foo 322 —x a5 Foo 322 2040 3 3

. 22245z 222 S22

lim —— = im — = lim - =—

z5+Foo 322 — 2 z5Fo0 322 2o+ 3 3

On en déduit, d'aprés le théoreme des gendarmes, que | lim f(z) = %
T—>+00




77 page 183

Limite finie : Théoreme des gendarmes
Limite infinie : Théoréme de comparaison (et on ne garde qu’une inégalité)

4

1. Pour tout réel z,

—1<sinz <1
<— —2<2sinx <2
<— r—2<x+2sine<x+2
Donc, pour tout = > 0,
r—2 x+2sinx  x+2
<
T T x
Or, lim =2 = lim Zf2 =1 donc, d'aprés le théoréme des gendarmes, | lim f(z) =1
z—+00 T—+00 r—+00
De méme, pour tout = < 0,
T —2 x+28ina:>:z—|—2
T T x
Or, lim 22 = lim %2 =1 donc, d'aprés le théoréme des gendarmes, | lim f(z) =
Tr—r—00 Tr—r—00 T—r—00
2. Pour tout réel z,
—1<cosz <1l <= 1<2+cosx <3
Donc pour tout x > 0,
3 < (24 cos(x))a® < 323
Or, lim 2% = 400 donc, d'aprés le théoréme de comparaison, | lim ¢(z) = 400
T—+00 T——+00
De méme, pour tout z < 0,
3> (2 + cos(z))x3 > 323
Or, lim 2% = —oo donc, d'aprés le théoréme de comparaison, | lim g(z) = —oc0
Tr—r—00 T—r—00
3. Pour tout réel z,
—1<sinz <1l <= rz—1<x+sine<r+1
Donc, pour tout z > 1,
1 1 1 L. . , .
> - > car la fonction inverse est strictement décroissante sur ]0; 00|
r—1" x+sinx” x+1
Et donc, pour tout x > 1,
T T S "
x—17 x+sinz” z+1
Or, 1 L — 1 - —1 donc, d'aprés le théoréme des gendarmes, | lim h(x) =
f xﬁnfoo z—1 xﬁnfoo x+1 Pr f & r :pﬁlr+noo ()
De méme, pour tout z < —1,
1 1 1 L . L
> — > car la fonction inverse est strictement décroissante sur | — co; 0[
r—1" x+4+sinx” z+4+1
Donc, pour tout z < —1,
T T T
x—1  x+sinz  z+1
Or, lim %3 = lim —%5 =1 donc, d'apres le théoreme des gendarmes, | lim h(z)=1
z——o0 ¥ z——o0 Tt T—>—00
4. Pour tout réel z,
—1<sinz <1 < -3 <3sinxr <3 <— :L'2—3 <z + 3sinx < 22+ 3
Or, lim 2% — 3 = 400 donc, d'aprés le théoréme de comparaison, | lim k(z) = +oo
Tr—r—+00 Tr——+00
Et lim 22— 3 = 400 donc, d'aprés le théoréme de comparaison, | lim k(z) = +oo
Tr—r—00 T—r—00




86 page 183

1. D'une part, lim (x +1) = —o0.
D'autre part hm e’ = (0 donc, par somme de limites, hm (e +3) =3.
—00 ——00

z+1
eT+3

Finalement, par quotient de limites, lim
Tr—r—00

—00

2. Pour tout = # 0,
x+1_:c(1+%) x 1+%

e$+3_ew(1+e%) _e$xl+e%

Or, par croissances comparées, lim ¢ = +oco donc, par quotient de limites lim £ = lim = =0.
z—+oo ¥ x—>+o00 € T—+00 &
. . . . T 1+1
Deplus lim 14+ %=1, et lim - =0 donc, par produit puis somme, hm 1 —|— = =1,dou lim +’§ =1
z—+00 z z—+oo € —+oo z—+oo 1tz
D’'ou, au final, par produit de limites, | lim 2ZfL =0
par p Z—+oo © +3
3. D’une part, hm e® =0et lim xe® =0 par croissances comparées.
—0o0 T—r—00
Par somme de limites , lim (me +2¢e* — 5) = —b.
Tr—r
D'autre part, hm e?* =0 donc par somme de limites, lim (e?* —3) = —3.
—0o0 Tr——00
: : F ; ze®+2e*=5 _ 5
En conclu5|on, par quotient de limites, mEEnOO Ems =3
4. Pour tout x # 0,
ze® + 2% —5  we” (1+2 - 55) T 1_,_,_%
2z _ - 2 3 T et _ 3
€ 3 € x (1 - 821) € 1 eQz
Par croissances comparées, lim ¢ = +o0 donc, par quotient de limites lim £ = lim -+ = 0.
x—+o0 T z—+o00 © T—too &
De pIus lim e* = +oo donc, par produit de limites, lim xze® = +o0o et donc, par quotient de limites,
T—>—+00 T—+00
x—>+o00 €
Par somme de limites, lim (1 —|— £ %) =1.
T——+00 xe
De plus, lim e?* = 400, d'ol, par quotient puis par somme, lim (1 — %) =1.
T—+00 T—+00 €
D’ou, au final, par quotient puis produit, | lim Z&F2=5 —
zo+oo €3
104 page 188
1. () = lim 1=1 lim —x =+o00 lim e* =0
r——00 T——00 T—>—00
Par somme de limites, on en déduit que| lim g(x) = +oo
T——00
e
= Pour tout z # 0, g(x) = ( )
T
3? e$
Par croissances comparées, lim — = +oo donc, par somme de limites, lim ( — 1) = +00
T—+00 T z—+oo \ T

x
De plus, lim xz = 400 donc, par produit de limites, lim =« (e — 1> = 400.
Tr—r

400 r—>+00 T

On en déduit que | lim g(x) = +oo

T—+400

(b) g est dérivable sur R car c'est la somme de fonctions dérivables sur R.
Pour tout z € R, ¢'(x) = e* — 1.
Or,
J(z)>0 <+—= €&-120 <<= €'>1 — >0

On en déduit le tableau de variations suivant :



T —00 0 +0o0
J'(x) — 0 +
400 400
9(x)
2

De plus, g(0) =1 —0+¢% = 2.
Ainsi, la fonction g admet un minimum en z = 0 égal a 2.
Par conséquent, pour tout réel z, g(x) > 2 donc | la fonction g est strictement positive sur R ‘ .

2. = lim l=1et lim 2= —oo donc, par somme de limites, lim (z+ 1) = -0
T—r—00 T—r—00 T—r—00
D'autre part, lim e* = 0T donc, par quotient de limites, lim — = —oo. (ce n'est pas une FI)
T——00 x——o00 e¥
Par somme de limites, on en déduit que| lim f(z) = —o0
T—r—00
: . e , - . : 1
= Par croissances comparées, lim — = 400 donc, par quotient de limites, lim — = lim —& =0
r—+o00 I z—4o00 e¥ T—+o00 €
x

De plus, lim (z +1) = +o0.
T—r+00

Par sommes de limites, on en déduit que | lim f(x)= 400
xr—>+00

3. f est dérivable sur R car c’est la somme de fonctions dérivables sur R.
Pour tout x € R,
e* — xe®

flla) =1+ ey - l+e @ —we™™ =e (" +1—xz)=e "g(x)

4. D’aprés la question 1. (b), pour tout réel x, g(z) > 0.
De plus, pour tout réel x, e=* > 0.
Par conséquent, pour tout réel z, f'(x) >0 donc‘ la fonction f est strictement croissante sur R‘ .

5. On af(O):0+1+e()—0:1etf’(O):e’Oxg(O):Q.
L'équation réduite de la tangente a ¥ au point d'abscisse 0 est de la forme
y=f(0)(z—0)+f(0)

y=2x+1

6. Pour étudier la position relative de % et T, on étudie le signe de la fonction h, définie sur R, par

h(z) = f(z) — 2z + 1)
h(z)=z+1+— — (20 +1)
h(a:):e%—x
W)= = (1—e¢")

Deplus,1—e* 20 < 12 €% «<— e >et — 0>z
La fonction h admet donc le tableau de signes suivant :



x —00 0 —+00
z - 0 +

1—e¢" + 0 —
e’ + +

h(z) — 0 —

Ainsi, pour tout réel x, h(xz) < 0, c'est-a-dire f(z) — 2z +1) <0 < f(z) <2z + 1.
On en déduit que ‘ % est toujours situé en dessous de T ‘ sauf en z = 0 ol les deux courbes se superposent.




3 Autres exercices
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