
Correction des exercices du Chapitre 3 Terminale Spécialité
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1 Exemples du cours
Exemple 3

Soit un la suite définie par
{

u0 = 4

un+1 =
1

2
un + 1 pour tout entier naturel n

1. Montrer par récurrence que la suite (un) est minorée par 2.

• Pour tout n ∈ N, on pose
P(n) : un ⩾ 2

• Initialisation :
u0 = 4 ⩾ 2 donc P(0) est vraie.

• Hérédité :
Soit k ∈ N tel que P(k) est vraie. Autrement dit, on suppose que uk ⩾ 2.
On veut démontrer que P(k + 1) est vraie, c’est-à-dire uk+1 ⩾ 2.

On a : uk ⩾ 2 d’après l’hypothèse de récurrence

⇒ 1

2
× uk ⩾ 1

2
× 2

⇒ 1

2
× uk + 1 ⩾ 1 + 1

⇒ uk+1 ⩾ 2

Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que, pour tout n ∈ N, un ⩾ 2.

2. En déduire que la suite (un) est décroissante.

Pour tout n ∈ N, un+1 − un =
1

2
un + 1− un = −1

2
un + 1

Or, d’après la question précédente, on a pour tout n ∈ N :

un ⩾ 2 ⇐⇒ −1

2
× un ⩽ −1

2
× 2 car −1

2
< 0

⇐⇒ −1

2
un + 1 ⩽ −1 + 1

⇐⇒ −1

2
un + 1 ⩽ 0

Par conséquent, pour tout n ∈ N, un+1 − un ⩽ 0.
La suite (un) est donc décroissante.

3. Que peut-on en déduire pour la convergence de la suite (un) ?

D’après ce qui précède, la suite (un) est décroissante et minorée par 2.
D’après le théorème de convergence monotone, la suite (un) est convergente.

Exemple 9

1. lim
n→+∞

n3 = 0 et lim
n→+∞

1

n
= 0.

Par addition de limites, lim
n→+∞

n3 +
1

n
= +∞



2. lim
n→+∞

3n+ 1 = +∞ et lim
n→+∞

−7n+ 5 = −∞.

Par produit de limites, lim
n→+∞

(3n+ 1)(−7n+ 5) = −∞

3. Par addition de limites, lim
n→+∞

3− 4

n
= 3

De plus, lim
n→+∞

2

n2
= 0+

Par quotient de limites, lim
n→+∞

3− 4

n
2

n2

= +∞

4. un = n3

(
n3

n3
− n2

n3
+

3n

n3
− 1

n3

)
= n3

(
1− 1

n
+

3

n2
− 1

n3

)
Par addition de limites, lim

n→+∞
1− 1

n
+

3

n2
− 1

n3
= 1.

De plus, lim
n→+∞

n3 = +∞.

Par produit de limites, lim
n→+∞

n3 − n2 + 3n− 1 = +∞

5. un =
2n2 + 1

−n2 + 6
=

n2

(
2 +

1

n2

)
n2

(
−1 +

6

n2

) =
2 +

1

n2

−1 +
6

n2

Par addition de limites, lim
n→+∞

2 +
1

n2
= 2 et lim

n→+∞
−1 +

6

n2
= −1.

Par quotient de limites, lim
n→+∞

2n2 + 1

−n2 + 6
= −2

6. un =
n2 + 3n− 5

n3 − 6n2 + 1
=

n2

(
1 +

3

n
− 5

n2

)
n3

(
1− 6

n
+

1

n3

) =

(
1 +

3

n
− 5

n2

)
n

(
1− 6

n
+

1

n3

)

On a lim
n→+∞

n = +∞ et lim
n→+∞

1− 6

n
+

1

n3
= 1 donc, par produit de limites, lim

n→+∞
n

(
1− 6

n
+

1

n3

)
= +∞.

Enfin, comme lim
n→+∞

1 +
3

n
− 5

n2
= 1, on en déduit par quotient de limites que lim

n→+∞

n2 + 3n− 5

n3 − 6n2 + 1
= 0

7. un = n
√
n− n = n (

√
n− 1)

Comme lim
n→+∞

n = +∞ et lim
n→+∞

√
n−1 = +∞, on en déduit par produit de limites que lim

n→+∞
n
√
n− n = +∞

8. un = (−2n+ 3)
n+ 3

−n2 + n+ 6
=

−2n2 − 6n+ 3n+ 9

−n2 + n+ 6
=

−2n2 − 3n+ 9

−n2 + n+ 6
=

n2

(
−2− 3

n
+

9

n2

)
n2

(
−1 +

1

n
+

6

n2

) =
−2− 3

n
+

9

n2

−1 +
1

n
+

6

n2

Par addition de limites, lim
n→+∞

−2− 3

n
+

9

n2
= −2 et lim

n→+∞
−1 +

1

n
+

6

n2
= −1.

Par quotient de limites, lim
n→+∞

(−2n+ 3)
n+ 3

−n2 + n+ 6
= −2



9. un =
n

n+
√
n
=

n

n

(
1 +

n√
n

) =
1

1 +
1√
n

Par addition de limites, lim
n→+∞

1 +
1√
n
= 1

De plus, lim
n→+∞

1 = 1 donc, par quotient de limites, lim
n→+∞

n

n+
√
n
= 1

10. un =
9− n2

(n+ 1)(2n+ 1)
=

−n2 + 9

2n2 + 3n+ 1
=

n2

(
−1 +

9

n2

)
n2

(
2 +

3

n
+

1

n2

) =
−1 +

9

n2

2 +
3

n
+

1

n2

Par addition de limites, lim
n→+∞

−1 +
9

n2
= −1 et lim

n→+∞
2 +

3

n
+

1

n2
= 2

Par quotient de limites, lim
n→+∞

9− n2

(n+ 1)(2n+ 1)
= −1

2

11. un =
1

3
− n

(2n+ 1)2
=

1

3
− n

4n2 + 4n+ 1
=

1

3
− n

n2

(
4 +

4

n
+

1

n2

) =
1

3
− 1

n

(
4 +

4

n
+

1

n2

)
Par addition de limites, lim

n→+∞
4 +

4

n
+

1

n2
= 4

De plus, lim
n→+∞

n = +∞ donc, par produit de limites, lim
n→+∞

n

(
4 +

4

n
+

1

n2

)
= +∞

Ensuite, lim
n→+∞

1 = 1 donc, par quotient de limites, lim
n→+∞

1

n

(
4 +

4

n
+

1

n2

) = 0

Enfin, lim
n→+∞

1

3
=

1

3
donc, par addition de limites, lim

n→+∞

1

3
− n

(2n+ 1)2
=

1

3

12. un =
2

3n
− 2n2 + 3

3n2 + n+ 1
=

2

3n
−

n2

(
2 +

3

n2

)
n2

(
3 +

1

n
+

1

n2

) =
2

3n
−

2 +
3

n2

3 +
1

n
+

1

n2

Par addition de limites, lim
n→+∞

2 +
3

n2
= 2 et lim

n→+∞
3 +

1

n
+

1

n2
= 3

Par quotient de limites, lim
n→+∞

−
2 +

3

n2

3 +
1

n
+

1

n2

= −2

3

Enfin, lim
n→+∞

2

3n
= 0 donc, par addition de limites, lim

n→+∞

2

3n
− 2n2 + 3

3n2 + n+ 1
= −2

3



2 Exercices du manuel
Exercice 25 page 145
1. lim

n→+∞

√
n = +∞ et lim

n→+∞
n2 = +∞.

Par somme de limites, lim
n→+∞

(√
n+ n2

)
= +∞ .

2. lim
n→+∞

1

n4
= 0.

Par somme de limites, lim
n→+∞

(
3 +

1

n4

)
= 3 .

3. lim
n→+∞

1

n2
= 0 et lim

n→+∞

(
4

3

)n

= +∞ car 4

3
> 1.

Par somme de limites, lim
n→+∞

((
4

3

)n

+
1

n2

)
= +∞ .

4. lim
n→+∞

1√
n
= 0 et lim

n→+∞
n3 = +∞.

Par somme de limites, lim
n→+∞

(
1√
n
− n3

)
= −∞ .

5. lim
n→+∞

n = +∞ et lim
n→+∞

πn = +∞ car π > 1.
Par somme de limites, lim

n→+∞
(n+ πn) = +∞.

Finalement, lim
n→+∞

(− (n+ πn)) = −∞ .

6. lim
n→+∞

n5 = +∞ et lim
n→+∞

(
7

10

)n

= 0 car −1 <
7

10
< 1.

Par somme de limites, lim
n→+∞

(
−4 +

(
7

10

)n

+ n5

)
= +∞ .

Exercice 26 page 145
1. On a une forme indéterminée du type « +∞−∞ ».

Pour tout n ⩾ 1,
rn = n2 − n = n2

(
1− 1

n

)
lim

n→+∞
1 = 1 et lim

n→+∞

1

n
= 0 donc, par somme de limites, lim

n→+∞

(
1− 1

n

)
= 1.

De plus lim
n→+∞

n2 = +∞ donc, par produit de limites, on a lim
n→+∞

rn = +∞ .

2. On a une forme indéterminée du type « +∞−∞ ».
Pour tout n ⩾ 1,

sn = −n+
√
n = −n

(
1−

√
n

n

)
= −n

(
1− 1√

n

)

Ne pas oublier que n√
n
=

√
n×

√
n√

n
=

1√
n

lim
n→+∞

1 = 0 et lim
n→+∞

1√
n
= 0 donc, par somme de limites, lim

n→+∞

(
1− 1√

n

)
= 1.

De plus lim
n→+∞

−n = −∞ donc, par produit de limites, on a lim
n→+∞

sn = −∞ .

3. On a une forme indéterminée du type « +∞−∞ ».
Pour tout n ⩾ 1,

tn = −(−
√
n+ n7) =

√
n− n7 = −n7

(
− 1

n6
√
n
+ 1

)



De la même façon,
√
n

n7
=

√
n

n6 × n
=

√
n

n6 ×
√
n×

√
n
=

√
n

n6 ×
√
n

lim
n→+∞

√
n = +∞ et lim

n→+∞
n6 = +∞ donc, par produit de limites, lim

n→+∞

(
n6√n

)
= +∞.

Ainsi, par quotient de limites, on a lim
n→+∞

(
1

n6
√
n

)
= 0.

Par somme de limites, on a alors lim
n→+∞

(
− 1

n6
√
n
+ 1

)
= 1.

Finalement, lim
n→+∞

−n7 = −∞ donc, par produit de limites, lim
n→+∞

tn = −∞ .

4. On a une forme indéterminée du type « +∞−∞ ».
Pour tout n ⩾ 1,

un = −(n6 − n3) = −n6 + n3 = −n6

(
1− 1

n3

)
lim

n→+∞
− 1

n3
= 0 donc, par somme de limites, lim

n→+∞
1− 1

n3
= 1.

De plus, lim
n→+∞

−n6 = −∞ donc, par produit de limites, on a lim
n→+∞

un = −∞ .

5. On a une forme indéterminée du type « +∞−∞ ».
Pour tout n ⩾ 1,

vn = n5 − n3 + n = n5

(
1− 1

n2
+

1

n4

)
lim

n→+∞
− 1

n2
= 0 et lim

n→+∞
− 1

n4
= 0 donc, par somme de limites, lim

n→+∞

(
1− 1

n2
+

1

n4

)
= 1.

De plus, lim
n→+∞

n5 = +∞ donc, par produit de limites, on a lim
n→+∞

vn = +∞ .

6. On a une forme indéterminée du type « +∞−∞ ».
Pour tout n ⩾ 1,

wn = n6 − n4 + n2 − n = n6

(
1− 1

n2
+

1

n4
− 1

n5

)
lim

n→+∞
− 1

n2
= 0, lim

n→+∞
− 1

n4
= 0 et lim

n→+∞
− 1

n5
= 0 donc, par somme de limites lim

n→+∞

(
1− 1

n2
+

1

n4
− 1

n5

)
= 1.

De plus, lim
n→+∞

n6 = +∞ donc, par produit de limites, on a lim
n→+∞

wn = +∞ .

Exercice 27 page 145
1. Par somme de limites, on a lim

n→+∞

(
n5 + 4

)
= +∞ et lim

n→+∞
(n− 3) = +∞.

Par produit de limites, lim
n→+∞

(n5 + 4)(n− 3) = +∞ .

2. lim
n→+∞

(
185

192

)n

= 0 car −1 <
185

192
< 1.

Par produit de limites, lim
n→+∞

5×
(
185

192

)n

= 0 .

3. Par somme de limites, on a lim
n→+∞

(8n− 2) = +∞ et lim
n→+∞

(
3 +

1√
n

)
= 3.

Par produit de limites, lim
n→+∞

(8n− 2)

(
3 +

1√
n

)
= +∞ .

4. lim
n→+∞

(
144

121

)n

= +∞ car 144

121
> 1.

Par produit de limites, lim
n→+∞

−2×
(
144

121

)n

= −∞ .



5. Par somme de limites, on a lim
n→+∞

(
6− n4

)
= −∞ et lim

n→+∞

(
1

n3
+ 7

)
= 7.

Par produit de limites, lim
n→+∞

(6− n4)

(
1

n3
+ 7

)
= −∞ .

6. Par somme de limites, on a lim
n→+∞

(4− n7) = −∞ et lim
n→+∞

(n9 + 1) = +∞.

Par produit de limites, lim
n→+∞

(4− n7)(n9 + 1) = −∞ .

Exercice 30 page 145
1. Par somme de limites, on a lim

n→+∞
(n2 − 4) = +∞.

Par quotient de limites, lim
n→+∞

2

n2 − 4
= 0 .

2. Par somme de limites, lim
n→+∞

(
4 +

1

n

)
= 4.

De plus, lim
n→+∞

n3 = +∞ donc, par quotient de limites, lim
n→+∞

n3

4 +
1

n

= +∞ .

3. Par somme de limites, on a lim
n→+∞

(
4− 1√

n

)
= 4 et lim

n→+∞

(
1

n3
− 6

)
= −6.

Par quotient de limites, lim
n→+∞

4− 1√
n

1

n3
− 6

=
4

−6
= −2

3
.

4. lim
n→+∞

(
4

3

)n

= +∞ car 4

3
> 1.

Par quotient de limites, lim
n→+∞

1(
4

3

)n = 0 .

5. lim
n→+∞

(
3

4

)n

= 0+ car −1 <
3

4
< 1.

De plus, lim
n→+∞

−n = −∞ donc, par quotient de limites, lim
n→+∞

−n(
3

4

)n = −∞ .

Ne surtout pas oublier de préciser le 0+ !
Si cela avait été 0−, la limite globale aurait été +∞ par la règle des signes.
C’est un oubli classique qui vous vaudra un magnifique « BLUFF ! » sur votre copie.

6. lim
n→+∞

(
5

7

)n

= 0 car −1 <
5

7
< 1.

Par somme de limites, on a lim
n→+∞

(
1

n2
− 9

)
= −9.

Par quotient de limites, lim
n→+∞

(
5

7

)n

1

n2
− 9

= 0 .



Exercice 89 page 207
1. f est une fonction rationnelle, elle est donc dérivable sur ]− 1;+∞[.

Pour tout x > 1,

f ′(x) =
2× (x+ 1)− (2x+ 1)× 1

(1 + x)2

=
2x+ 2− 2x− 1

(1 + x)2

=
1

(1 + x)2
> 0

On en déduit le signe de f ′ puis les variations de la fonction f sur [1; 2].

x

f ′(x)

f(x)

0 1

+

3
2
3
2

5
3
5
3

2. f est croissante sur [1; 2] avec f(0) = 3
2 et f(1) = 5

2
.

Par conséquent, pour tout x ∈ [1; 2], on a f(x) ∈ [1; 2].
3.
4. En calculant les premiers termes de la suites (un), on peut conjecturer que la suite (un) est croissante.

• Pour tout n ∈ N, on pose :
P (n) : 1 ⩽ un ⩽ un+1 ⩽ 2

• Initialisation :
Pour n = 0, on a u0 = 1, 5 et u1 = f(u0) = 1, 6.
Par conséquent, 1 ⩽ u0 ⩽ u1 ⩽ 2 donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que 1 ⩽ uk ⩽ uk+1 ⩽ 2.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que 1 ⩽ uk+1 ⩽ uk+2 ⩽ 2.
On a :

1 ⩽ uk ⩽ uk+1 ⩽ 2 d’après l’hypothèse de récurrence

⇒ f(1) ⩽ f(uk) ⩽ f(uk+1) ⩽ f(1) car la fonction f est croissante sur [1; 2]

⇒ 1 ⩽ 3

2
⩽ uk+1 ⩽ uk+2 ⩽

5

3
⩽ 2 car f(1) = 3

2
et f(2) = 5

3

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, 1 ⩽ un ⩽ un+ 1 ⩽ 2.
En conclusion, la suite (un) est croissante et, pour tout n ∈ N, un ∈ [1; 2].

5. La suite (un) est croissante et majorée par 2 donc, d’après le théorème de convergence monotone, la suite (un) est
convergente. Il faudra attendre le chapitre 5 pour réussir à prouver que sa limite est 1+

√
5

2 .



Exercice 92 page 153
1. (a) Pour tout entier naturel n, on a :

vn+1 − un+1 =
un + 3vn

4
− 2un + vn

3
=

3un + 9vn − 8un − 4vn
12

=
5

12
(vn − un)

(b) Pour tout entier naturel n, on a :

wn+1 = vn+1 − un+1 =
5

12
(vn − un) =

5

12
wn

Par conséquent, la suite (wn) est une suite géométrique de raison q =
5

12
et de premier terme w0 = v0 − u0 =

10− 2 = 8.
Ainsi, pour tout entier naturel n, on a :

wn = w0 × qn

wn = 8

(
5

12

)n

2. (a) Pour tout entier naturel n, on a :

un+1 − un =
2un + vn

3
− un =

2un + vn − 3un
3

=
−un + vn

3
=

wn

3

Or, comme pour tout entier naturel n, wn = w0 × qn = 8

(
5

12

)n

, on en déduit que wn ⩾ 0.
Ainsi, un+1 − un ⩾ 0 et donc la suite (un) est croissante.

Pour tout entier naturel n, on a :

vn+1 − vn =
un + 3vn

4
− vn =

un + 3vn − 4vn
4

=
un − vn

4
=

−wn

4

Or, comme pour tout entier naturel n, wn ⩾ 0, alors vn+1 − vn ⩽ 0.
Par conséquent, la suite (vn) est décroissante.

(b) Comme la suite (vn) est décroissante, pour tout entier naturel n, on a vn ⩽ v0, c’est-à-dire vn ⩽ 10. Or, pour
tout entier naturel n, on a wn ⩾ 0 c’est-à-dire vn−un ⩾ 0 d’où vn ⩾ un. On a donc un ⩽ vn ⩽ 10 c’est-à-dire
un ⩽ 10.

Comme la suite (un) est croissante, pour tout entier naturel n, on a un ⩾ u0 c’est-à-dire un ⩾ 2. Or,
pour tout entier naturel n, on a vn ⩾ un d’où vn ⩾ un ⩾ 2 c’est-à-dire vn ⩾ 2.

(c) La suite (un) est croissante et majorée par 10 donc elle converge vers un réel ℓ.
La suite (vn) est décroissante et minorée par 2 donc elle converge vers un réel ℓ′.

3. Pour tout entier naturel n, on a wn = vn − un. Ainsi, lim
n→+∞

wn = ℓ′ − ℓ.

Or, comme −1 <
5

12
< 1 alors lim

n→+∞

(
5

12

)n

= 0 et donc, par produit de limites, lim
n→+∞

wn = 0.
On en déduit alors que ℓ′ − ℓ = 0 c’est-à-dire ℓ = ℓ′.

4. (a) Pour tout entier naturel n, on a :

tn+1 = 3un+1 + 4vn+1 = 3× 2un + vn
3

+ 4× un + 3vn
4

= 3un + 4vn = tn

On en déduit que la suite (tn) est constante égale à t0 = 3u0 + 4v0 = 6 + 40 = 46.

(b) On a lim
n→+∞

tn = 46 et lim
n→+∞

tn = 3ℓ+ 4ℓ = 7ℓ par opérations sur les limites, d’où 7ℓ = 46 ⇔ ℓ =
46

7
.
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