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1 Exemples du cours

Exemple 3

Dans chaque cas, plusieurs méthodes sont possibles.
Avec davantage de pratique, vous prendrez |'habitude d'utiliser la méthode la plus adaptée.
Peut-étre trouverez-vous des méthodes plus rapides que celles que j'ai utilisées!

1. u,=n?—n+2

Pour tout n € N, Uppl —tUn=nm+1)2 = (n+1)+2—(n?—n+2)
=nl+2m+1-n—-1+2-n>+n-2
=2n
=0

Par conséquent, ’ la suite (uy) est croissante

n
2. u, = %
Pour tout entier n, on a u, > 0. /\ Cette hypothése est nécessaire pour utiliser la méthode qui suit
Pour tout n € N, ontl
Un+1 ﬁ
u, 2"
31’),
2n+1 an
BEGET
2
3
<1

Nous avons prouvé que pour tout n € N, upy1 < Uy,
Par conséquent, ’ la suite (uy,) est strictement décroissante
_3n—2

3. Uy, = ——
" n—+1
Pour tout n € N,

3n+1)—2 3n-2
Upt1 — Uy = —
T A D) +1 i+l

_3n+1 3n-2

n+2 n+l
3 1 1) —(3n—2 2
= (3n + )(72++)1)((f2) J(n+2) (mise au méme dénominateur)
n n

~3n*+3n+n+1-3n—6n+2n+4
B (n+1)(n+2)

9
(n+1)(n+2)
>0

Par conséquent, ’ la suite (uy,) est strictement croissante ‘

Autre méthode :

. 3x —2
Soit f la fonction définie sur R par f(z) = x+ T
x
(Cette fonction admet une valeur interdite en # = —1 mais ici —1 ¢ R™)
u(x) u(z) =3z —2 v(z)=2+1

flx) = v(z) avec u'(x) =3 v(z) =1



Pour tout € R,

o (x)v(z) — u(z)v(z)

f,(;l?): U2($)
3 +1)—(Br—2)x1
B (x +1)2

5
(x +1)2

Pour tout z € R*, f/(z) > 0 donc la fonction f est strictement croissante sur R*.
En conclusion, ‘ la suite (uy,) est strictement croissante ‘

1
Uy =—-n+3 ) .
Pour tout n € N, un+1—un:—§(n+1)+3— <—3n+3>
1
3
<0
Par conséquent, ’ la suite (uy,) est strictement décroissante ‘
. up = (n—5)?
Pour tout n € N, Uny1 — Up = (n+1—=5)2 = (n - 5)?
=n®—8n+16 — n® 4+ 10n — 25

=2n—9

On constate que 2n — 9 > 0 dés que n > 5.
Par conséquent, ’ la suite (uy,) est croissante a partir de n = 5. ‘

1 n
P <2> 1 n+1 1\"
Pour tout n € N, Upil — Up = — <2> — (_ <2) )

= <1>n % (_1 + 1) on factorise par <1>"
2 2 2
1
2

Par conséquent, ’ la suite (uy,) est strictement croissante ‘

. (uy) définie par ug = 1 et pour n > 0, up4+1 = 2u, + 3
A I'aide de la calculatrice, on conjecture que la suite (u,) est croissante.
Démontrons ce résultat par récurrence.

= Pour tout n > 0, on note
P(n) 1 Upt1 = up

= [Initialisation :
Pourn=0,onauy=1etu; =2 xuy+3=>5.
u1 = up donc P(0) est vraie.

= Hérédité :
Soit k € N tel que P(k) est vraie.

Autrement dit, on suppose que ugyq = .
On veut démontrer que P(k + 1) est vraie, c'est-a-dire :

Uk42 = Uk41



U1 = Uk d’'apres I'hypothese de récurrence
= 2 X Upy1 = 2 X ug
= 2XUpr1+3 22X up+3
= Uk+2 2 Uk+1

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que‘ pour tout n € N, upy1 = upy

On en déduit donc que‘ la suite (uy,) est croissante ‘

. (uy) définie par ug = 80 et pour n > 0, up+1 = 0, 5u, + 30
A I'aide de la calculatrice, on conjecture que la suite (u,,) est décroissante.
Démontrons ce résultat par récurrence.

= Pour tout n > 0, on note
P(n) : unt1 < up

= [Initialisation :
Pour n =10, on a ug = 80 et u; = 0,5 X ug + 30 = 70.
u1 < up donc P(0) est vraie.

= Hérédité :

Soit k € N tel que P(k) est vraie.

Autrement dit, on suppose que ug1 < Ug.

On veut démontrer que P(k + 1) est vraie, c'est-a-dire :

Uk4+2 < Up+1

Uk+1 < U d’'apres I'hypothese de récurrence
= 0,5 X ug41 < 0,5 X ug
= 0,5 X up+1 +30 < 0,5 x ug + 30
= U2 < Ukl

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que‘ pour tout n € N, upy1 < upy

On en déduit donc que‘ la suite (uy,) est décroissante ‘




2 Feuille d’exercices

Exercice 1

= Pour tout n € N, on pose :
P(n) : u, <1
= Initialisation :
Pour n =0, on a ug = —1 < 1 donc P(0) est vraie.
= Hérédité :
Soit k € N tel que P(k) est vraie. Autrement dit, on suppose que uj < 1.

On veut démontrer que P(k + 1) est vraie, c'est-a-dire que ug4+q < 1.
Ona:

up <1 d’'apres I'hypothese de récurrence
0,2u <0,2x1

0,2ur +0,6 <0,240,6

upr1 < 0,8 <1

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, u, <1

Exercice 2
= Pour tout n € N, on pose :

Pn) : v,=2x3"+1

= Initialisation :
Pour n =0, on a d'une part vy = 3 et d'autre part 2 x 3° + 1 = 3.
On a bien égalité donc P(0) est vraie.

= Hérédité :
Soit k € N tel que P(k) est vraie. Autrement dit, on suppose que vy = 2 X 3k 4+ 1.
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que vj = 2 x 3F+1 + 1.
Ona:
V41 = 3'Uk -2
Vg1 = 3 X (2 x 3k 4 1) -2 d’'apres I'hypothese de récurrence
Vg1 =2x3F x34+3-2

Vg1 =2 x 3L 41

Par conséquent, P(k + 1) est vraie.

= Conclusion :

Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, v, =2 x 3" 4+ 1

Exercice b

= Pour tout n € N, on pose :

= |nitialisation :
Pour n =10, on a wg = 0 donc 0 < wq < 4.
Par conséquent, P(0) est vraie.



= Hérédité :
Soit k € N tel que P(k) est vraie. Autrement dit, on suppose que 0 < wy
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que 0 < w41 < 4.
Ona:

<4

0w <4 d’'apres I'hypothese de récurrence

0,5 x0<0,5w, £0,5x4

0+8<0,5wp +8<2+8

V8 < /0,5wy, + 8 < V10 car la fonction racine carrée est croissante sur [0; +o00|
0< V8 < we <V10<4

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, 0 < w,, < 4

= Composer une inégalité par une fonction croissante préserve son sens.
= Composer une inégalité par une fonction décroissante change son sens.
Cet argument est le plus important de la récurrence précédente et il ne faut surtout pas I'oublier!

Exercice 6

3. = Pour tout n € N, on pose :
n?(n +1)2

Pn) : 34+25 4. . +nd= I

= Initialisation :
Pour n = 0, la somme de gauche est égale a 0.
' . 0%x(0+1)2 _
Dautre part, le terme de droite vaut ———— = 0.
On a bien égalité donc P(0) est vraie.
= Hérédité :
Soit k € N tel que P(k) est vraie.
k2(k+1)2
1 :
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que :

Autrement dit, on suppose que 13 +23 + .. 4+ k% =

5 _ (k+1)%(k +2)?

P+ + k4 (k+1) 1

Ona:

3 _ Kk +1)?
7 k2(kt- 1)2 4+ 4(k +1)3
(k+1)2 (l;21 +4(k+1))
(k+1)2 (k:24+ 4k + 4)
(k + 1)2(ki 2)2
4

B+ 4. 4B+ (k+1) + (k+1)° d'aprés I'hypothése de récurrence

Par conséquent, P(k + 1) est vraie.

= Conclusion :

Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, 13 4+ 23 + ... 4+ n3 =




Exercice 10

1. = Pour tout n € N*, on pose

= Initialisation :
Pour n =1, on a d'une part v; = % et d'autre part 3% =3
On a bien égalité donc P(1) est vraie.

= Hérédité :

Soit k € N* tel que P(k) est vraie. Autrement dit, on suppose que v = 3%
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que vy = :fktll
Ona:
kE+1
Vpt1 = v
k+1 3 Uk
kE+1 k
Vgt1 = 3% X " d’'apres I'hypothese de récurrence
kE+1
Vk+1 = W car k # 0

Par conséquent, P(k + 1) est vraie.

= Conclusion :

Par le principe de récurrence, on a démontré que, | pour tout entier naturel n > 1, v, = —

2. PourtoutneN*,onavnzgﬁn>0carn>0et3">0.
De plus, pour tout n € N*,
Upt1  n+1 3" n+1

= X
Up, 3ntl n 3n

n—+1

v 3n
n+1 <1

Un,
En conclusion, ‘ la suite (v,,) est décroissante

<1

Puisque n > 1, alors 3n > n+n > n+ 1 donc

On vient de prouver que pour tout n > 1,

3. A l'aide de la calculatrice, on peut conjecturer que, pour tout n € N*, on a :

0<w, <

W

1 1
— On sait déja que (vy,) est décroissante, et on sait que v; = 3 Pour tout n € N*, on a donc v,, < 3

— On a également déja prouvé que pour tout n € N*, on a v, > 0 car, par définition, v, = 3

En conclusion, pour tout n € N*, on a bien| 0 < v, <

W =

Exercice 11

1. Le terme u, fournit le nombre de milliers d'arbres en 2020 + n, donc ug fournit le nombre de milliers d'arbres en
2020 4+ 0 = 2020. D’apres I'énoncé, ce nombre d'arbres est de 50 000, soit 50 milliers, d'ou .
De plus, chaque année, on sait que 5% des u,, arbres sont retirés, et que 3 000 nouveaux sont ajoutés.

1 A 5
Dol | upy1 = <1100> U, +3 =0,95u, + 3

2. Le tableau de valeurs de la calculatrice permet de conjecturer que la suite (u,,) est strictement croissante.
Prouvons le par récurrence.

= Pour tout n € N, on pose
P(n) D Upgl > Up



= Initialisation :
Pour n =10, on a ug = 50 et u; = 0,95 x 50 + 3 = 50, 5.
Ainsi u; > ug, donc P(0) est vraie.

= Hérédité :
Soit k£ € N tel que P(k) est vraie. Autrement dit, on suppose que ugy1 > u.
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que ugyo > Ugi1-
Ona:

Up41 > Uk d’'apres I'hypothese de récurrence
0, 95ujr1 > 0, 95up,
0, 95ujr1 +3 > 0,95u; + 3
Uk+2 > Uk+1
Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que, ‘ pour tout entier naturel n, u,4+1 > up

On en déduit que‘ la suite (uy,) est bien strictement croissante

. = Pour tout n € N, on pose
P(n) : up, =60—10 x 0,95"
= |nitialisation :
Pour n = 0, on a d'une part ug = 50 et d’autre part 60 — 10 x 0,95% = 50.
On a bien égalité donc P(0) est vraie.
= Hérédité :
Soit k € N tel que P(k) est vraie. Autrement dit, on suppose que u; = 60 — 10 x 0, 95
On veut démontrer que P(k + 1) est vraie, c'est-a-dire que ug 3 = 60 — 10 x 0, 95FF1,
Ona:

U1 = 0,95u; + 3

Ug4+1 = 0,95 X (60 — 10 x O,95k> +3 d'apres I'hypothese de récurrence
Upy1 =57 — 10 x 0,958+ + 3

Upy1 = 60 — 10 x 0,951

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, u, = 60 — 10 x 0,95™ |.

. L'année 2026 correspond au rang n = 6 et ug = 60 — 10 x 0,955 ~ 52, 649.
‘ [l 'y aura donc environ 52 649 arbres dans la forét en 2026 selon ce modéle.

(a) Voici deux propositions de programme qui fonctionnent :

u = 50 u = 50
n=>0 n=~0
while u < 55 : while u < 955 :
u=0.95%xu+3 n=n+1
n=n+1 u =60 — 10 % 0.95 * xn
print(n) print(n)

(b) On a uyq = 54,867 < 55 et uj5 ~ 55,123 > 55.
‘ L'algorithme renverra donc la valeur 15.

. On a prouvé que, pour tout n € N, on a u,, = 60 — 10 x 0,95™.
Or, —10 x 0,95™ < 0, donc 60 — 10 x 0,95™ < 60.
Par conséquent, ’ pour tout entier naturel n, on a u, < 60 ‘ .

. On observe sur le tableau de valeurs de la calculatrice que les termes de la suite (uy,,) tendent de plus en plus vers
(sans jamais I'atteindre d'apres la question 6).
Cela signifie que, ‘ au fil des années, le nombre d'arbres dans la forét va tendre vers 60 000 arbres




Exercice 12

3

Démontrer que, pour tout entier naturel n, B = n®> — n est un multiple de 3.

On peut tout d'abord remarquer que :
n*—n=nn?-1)=nn-1)n+1)=(n-1n(n+1)

Ainsi, ce nombre est le produit de trois entiers consécutifs dont I'un est nécessairement un multiple de 3 donc le produit
I'est aussi.

Méthode 1 : On raisonne par récurrence.

= Pour tout n € N, on note P(n) : « n® — n est un multiple de 3 ».

= [nitialisation :
Pour n =0, on a n® —n = 03— 0 = 0 qui est bien un multiple de 3 donc P(0) est vraie.

= Hérédité :

Soit k € N tel que P(k) est vraie.

Autrement dit, on suppose que k> — k est un multiple de 3.
On veut démontrer que P(k + 1) est vraie, c'est-a-dire :

(k+1)* — (k + 1) est un multiple de 3

(k+13—(k+1) =k +3k*+3k+1 -k -1
= k* + 3k* + 2k
=k® — k+3k* + 3k
= (k* — k) +3(k* + k)
=3K1+3Ky avec Ky, Ko eZ d'aprés I'hypothése de récurrence

Finalement, (k + 1)3 — (k + 1) est bien un multiple de 3. Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence, on a démontré que, pour tout n € N,

k3 — k est un multiple de 3

Méthode 2 : On construit un tableau de congruences modulo 3.

n=... [3] 0 1 2
n—1=...[3 2 0 1
nt+l=...[3 1 2 0
n(n—1)(n+1) =... [3] 0 0 0

Dans tous les cas, n® —n = n(n —1)(n+ 1) = 03] donc B est bien un multiple de 3.

Méthode 3 : On raisonne par disjonction de cas. ‘

Soit . un entier naturel.



» Cas 1 : |l existe k € Z tel que n = 3k.
Dans ce cas, on a alors B = 3(k(3k — 1)(3k + 1)).
B est donc divisible par 3.

» Cas 2 : Il existe k € Z tel que n = 3k + 1.
Dans ce cas, on alors B= (3k+1)3k+1—-1)3k+1+1) =3(k(3k +1)(3k + 2)).
B est donc divisible par 3.

» Cas 3 : Il existe k € Z tel que n = 3k + 2.
Dans ce cas, on alors N = 3k +2)(3k+2—-1)(3k+2+ 1) =3((3k+2)(3k + 1)(k + 1)).
B est donc divisible par 3.

Ainsi, pour tout entier naturel n, B est bien un multiple de 3.

Exercice 13

C'est plutot bien expliqué sur cet article de mathsenjeans :
https://www.mathenjeans.be/documents/articles/2016_2017/Tour_de_hanoi.pdf

Exercice 14

Le principe de la récurrence double est le suivant : pour I'hérédité, au lieu d'utiliser le terme précédent, on va
fg utiliser les deux termes précédents. La conséquence sur l'initialisation est qu'on va alors avoir besoin des deux
premiers termes.

= Pour tout n € N, on pose :
P(n) : u,=1+2"

= [nitialisation :
On démontre ici que P(0) et P(1) sont vraies.
1+20=2=wget1+2!=3=uy donc P(0) et P(1) sont vraies.
= Hérédité :
Soit k € N tel que P(k) et P(k + 1) sont vraies. Autrement dit, on suppose que ug = 1 + 2 et uj 1 = 1 + 281,

On veut démontrer que P(k + 2) est vraie, c'est-a-dire que up o = 1 4 252,
Ona:

Uk+2 = SUg+1 — 2ug

Upyo =3 x (142871 —2 % (1 +2%) d'aprés I'hypothése de récurrence
Upyo =3+ 3 x 281 99 x oF

Upyo = 1+ 3 x 28T _ gk+1

Upyo = 1+ 2 x 2FHL

Upyo = 1+ 2FF2

Par conséquent, P(k + 2) est vraie.

= Conclusion :
Par le principe de récurrence double, on a démontré que, | pour tout entier naturel n, u,, =1+ 2™ |.

Exercice 15 (trés difficile)
= Pour tout n € N*, on pose :

P(n) : « Il existe deux entiers p et q tels que n = 2P(2¢ + 1) »
= [nitialisation :

Pour n =1, 0ona1=2%2x 0+ 1). La propriété est donc vraie en prenant p = 0 et ¢ = 0.
Par conséquent, P(1) est vraie.


https://www.mathenjeans.be/documents/articles/2016_2017/Tour_de_hanoi.pdf

= Hérédité :
Soit n € N* tel que P(n) est vraie pour tout k € [1;n].

Hors programme : C'est ca la spécificité de la récurrence forte. La seule différence avec une récurrence classique
est que I'on suppose que P(k) est vraie pour tous les entiers k compris entre 1 et n au sens large, alors que

fg pour la récurrence normale, on considére seulement un entier naturel k (et pas tous les entiers naturels k
compris entre 1 et n).

Autrement dit, on suppose que, pour chaque entier k € [1;n], il existe deux entiers p et ¢ tels que k = 2P(2¢ + 1).
On veut démontrer que P(n + 1) est vraie, c'est-a-dire qu'il existe deux entiers p et ¢ tels que n + 1 = 2P(2¢ + 1).

On a deux cas selon que n + 1 soit pair ou impair.

1

= Sin+1 estpair, alorsn+1 =2 x n—2{— .
1 1
Onalg % < n donc on peut utiliser I'hypothése de récurrence sur k = n—2&— )

1
"L oriag 4 1),

Ainsi, en posant p=p' + 1 et ¢ =¢, on a bien n+1=2P(2¢ + 1).

Il existe donc deux entiers p’ et ¢’ tels que

= Si n est impair, alors en posant p =0 et ¢ = g on a bien n+1=2P(2¢g+1).

Par conséquent, P(k + 1) est vraie.

= Conclusion :
Par le principe de récurrence forte, on a démontré que :

pour tout entier naturel n, il existe deux entiers p et ¢ tels que n = 2P(2¢ + 1) ‘ )




3 Exercices du manuel

Exercice 1 page 126

1. ’LL1:8 ’LL2:11 U3:14 U5:20

2. u1:1 UQ:3 U3:7 U5:31

3. ul:% UQZ% U3:% U5:%

4. w; =9 u = 25 ug = 57 us = 249

5. Lorsque n =0, 0n a ups1 =3 X ug—2x0doncu; =3 x2—-2x0=6.

Lorsque n =1,0onauj;11 =3 Xu; —2x 1ldoncug=3x6—-2x1=16.
Lorsque n =2, 0onauo1 1 =3 Xus —2x 2doncuz =3 x 16 —2 x 2=44.
Lorsque n =3, on augy; =3 X ug —2 x 3 donc ug =3 x44 —2 x 3 =126.
Lorsque n =4, on a ug11 =3 X ug — 2 x 4 donc us = 3 x 126 — 2 x 4 = 370.

Exercice 4 page 126

1. Pour tout entier naturel n, w, = 2 — 3n.

2. Pour tout entier naturel n, w, = 18 + 5n.

1

3. Pour tout entier naturel n > 1, w, = % +(n—-1)x35= % + 5n.

N[

Exercice 5 page 126
1. Pour tout entier naturel n, p, = 3 x 4™.
2. Pour tout entier naturel n, p, = 3 x (—2)".

. ~1
3. Pour tout entier naturel n > 1, p, =5 x (3)" .

Exercice 6 page 126

1. UQ:—2
u =0,5xXup+3=0,6x(-2)+3=2
U =0,5xu; +3=0,5x2+3=4

2. L'objectif de cette question est de déterminer une formule explicite de la suite (uy,).
La suite (u,) n'étant ni arithmétique, ni géométrique, il n'existe aucune formule permettant d’obtenir immédiatement
une forme explicite de la suite (u,). On utilise donc une suite auxiliaire (v,) qui s'avérera géométrique afin d'y

parvenir.
(a) Pour tout n € N,

Upt1 = Up+t1 — 6

=0,5u,+3—6
—0,5u, — 3
= 0,5 (up — 6)
=0, 5v,
De plus, vg = ug — 6 = —8.
Par conséquent, (v,,) est une suite géométrique de raison ¢ = 0,5 et de premier terme vy = —8.

(b) D’aprés ce qui précéde, on en déduit que, pour tout n € N,

Up = Vg X q"

\vn:—8xo,5n\

(c) Enfin, comme pour tout n € N, v, = u,, — 6, alors u,, = v, + 6, d'ou finalement

\un:—8x0,5”+6 \




Exercice 7 page 126

1. up =250 x 0,9 4 35 =260
En 2020, il y a 260 éleves inscrits dans |I'école de musique.
ug = 260 x 0,9 + 35 = 269
En 2021, il y a 269 éleves inscrits dans |I'école de musique.
2. up —ug =260 — 250 =10 et ug — u3 =269 — 260 =9
Ainsi, u1 — ug # uy — up donc la suite (u,) n'est pas arithmétique.

up 260 us 269

—=—=1,04et = =— 1,03

w250 0 260

Ainsi, — % —2 donc la suite (up) n'est pas géométrique.
UuQ Ul

3. Pour tout n € N, on a up+1 = 0,9 X u, + 35 et ug = 250.
D’apres le tableau de valeur de la calculatrice, la suite (u,) semble étre croissante.

Suites Graphigue Tableau

Régler 1'dintervalle

n u

277.1
284 .39
2890.951
296. 8559

anm 17a9

I = T ¥ B L R S T N < ]

4. 2050 correspond a I'année 2019 + 31. Grace a la calculatrice, on trouve u3; ~ 346.



4 Autres exercices

Exercice plutét sympathique (que les éléves de I'année derniére n’ont pas trouvé sympathique)

On consideére la suite (u,) définie par u; = 1 et, pour tout entier naturel n > 1,

Unp,
Uptl = —F5—=
u? +1
1. Calculer uy et ug.
2. Conjecturer une expression de u, en fonction de n.
3. Démontrer cette conjecture par récurrence.
1. up = 1
Ul 1 1
Vui+l VI2+1 V2
1 1 1 1
M2 V2 V2 V221 V21
Vud+1 1\2 \/1+1 3 V3 V2 V33
— ] +1 5 5 5
() 2 2 V2
. . 1
2. On peut conjecturer que, pour tout entier naturel n > 1, u, = —.
vn
3. = Pour tout n € N*, on pose
1
= Initialisation :
1
Pourn=1,onau; =1=——.
1 Vi
Par conséquent, P(1) est vraie.
= Hérédité :
1
Soit k € N* tel que P (k) est vraie. Autrement dit, on suppose que u, = ﬁ

1
E+1

On veut démontrer que P(k + 1) est vraie, c'est-a-dire que ugy1 =



= d’'apres I'hypothese de récurrence

vk +1

Par conséquent, P(k + 1) est vraie.

= Conclusion :

Par le principe de récurrence, on a démontré que, | pour tout entier naturel n > 1, u,, =

b
NG

Exercice pas sympathique

On consideére la suite (u,) définie par ug = 3 et, pour tout entier naturel n,

Uy — 2
u =
" Qu, + 5
Démontrer par récurrence que, pour tout entier naturel n,
9—-8n
Uy =
3+ 8n
= Pour tout n € N, on pose
9 —8n
Pn) : u, =
(n) " 3+8n

= [nitialisation :

9-8x0 9 -
3+8x0 3
Par conséquent, P(0) est vraie.

= Hérédité :

Pour n =0, on a

— 8k
Soit k € N tel que P(k) est vraie. Autrement dit, on suppose que uj = g—i—:k
9—-8(k+1)

On veut démontrer que P(k + 1) est vraie, c’est-a-dire que u =
q ( ) q k+1 3+8(k+1)



U — 2
2ur + 5
9 — 8k
__ 3+8k
- 9 — 8k
2 x +5

9 — 8k — 2(3 + 8k)
_ 3+ 8k

2(9 — 8k) + 5(3 + 8k)

3+ 8k
:9—8k:—2(3+8k:)x 3+ 8k
3+ 8k 2(9 — 8k) + 5(3 + 8k)

~ 9—8k—2(3+ 8k)
~2(9 — 8k) +5(3 + 8k)
_ 9-8k—6— 16k
18 — 16k + 15 + 40k
3 — 24k
33 + 24k

Ug+1 =

d’'apres I'hypothese de récurrence

g On peut tout a fait arriver a court d’inspiration ici. Une bonne idée serait de partir de |'autre co6té de I'égalité,

s 9—8(k+1)
c'est-a-dire de 3T8(hET)

, et de montrer qu'on tombe bien sur la méme chose!
D'autre part,

9-8k+1) 1-8k  (1-8k)x3 3-24k
3+8(k+1) 11+8k (11+8k)x3 33+ 24k

Finalement, on en déduit que :

Par conséquent, P(k + 1) est vraie.

= Conclusion :

9—8n
3+ 8n

Par le principe de récurrence, on a démontré que, | pour tout entier naturel n, u, =
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