
Correction des exercices du Chapitre 1 Terminale Spécialité
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1 Exemples du cours
Exemple 3

Dans chaque cas, plusieurs méthodes sont possibles.
Avec davantage de pratique, vous prendrez l’habitude d’utiliser la méthode la plus adaptée.
Peut-être trouverez-vous des méthodes plus rapides que celles que j’ai utilisées !

1. un = n2 − n+ 2
Pour tout n ∈ N, un+1 − un = (n+ 1)2 − (n+ 1) + 2− (n2 − n+ 2)

= n2 + 2n+ 1− n− 1 + 2− n2 + n− 2

= 2n

⩾ 0

Par conséquent, la suite (un) est croissante

2. un =
2n

3n
Pour tout entier n, on a un > 0. 1 Cette hypothèse est nécessaire pour utiliser la méthode qui suit

Pour tout n ∈ N,
un+1

un
=

2n+1

3n+1

2n

3n

=
2n+1

3n+1
× 3n

2n

=
2

3
< 1

Nous avons prouvé que pour tout n ∈ N, un+1 < un.
Par conséquent, la suite (un) est strictement décroissante

3. un =
3n− 2

n+ 1
Pour tout n ∈ N,

un+1 − un =
3(n+ 1)− 2

(n+ 1) + 1
− 3n− 2

n+ 1

=
3n+ 1

n+ 2
− 3n− 2

n+ 1

=
(3n+ 1)(n+ 1)− (3n− 2)(n+ 2)

(n+ 1)(n+ 2)
(mise au même dénominateur)

=
3n2 + 3n+ n+ 1− 3n2 − 6n+ 2n+ 4

(n+ 1)(n+ 2)

=
5

(n+ 1)(n+ 2)

> 0

Par conséquent, la suite (un) est strictement croissante

Autre méthode :
Soit f la fonction définie sur R+ par f(x) = 3x− 2

x+ 1
.

(Cette fonction admet une valeur interdite en x = −1 mais ici −1 /∈ R+)

f(x) =
u(x)

v(x)
avec u(x) = 3x− 2 v(x) = x+ 1

u′(x) = 3 v′(x) = 1



Pour tout x ∈ R+,

f ′(x) =
u′(x)v(x)− u(x)v′(x)

v2(x)

=
3(x+ 1)− (3x− 2)× 1

(x+ 1)2

=
5

(x+ 1)2

Pour tout x ∈ R+, f ′(x) > 0 donc la fonction f est strictement croissante sur R+.
En conclusion, la suite (un) est strictement croissante

4. un = −1

3
n+ 3

Pour tout n ∈ N, un+1 − un = −1

3
(n+ 1) + 3−

(
−1

3
n+ 3

)
= −1

3
< 0

Par conséquent, la suite (un) est strictement décroissante

5. un = (n− 5)2

Pour tout n ∈ N, un+1 − un = (n+ 1− 5)2 − (n− 5)2

= n2 − 8n+ 16− n2 + 10n− 25

= 2n− 9

On constate que 2n− 9 ⩾ 0 dès que n ⩾ 5.
Par conséquent, la suite (un) est croissante à partir de n = 5.

6. un = −
(
1

2

)n

Pour tout n ∈ N, un+1 − un = −
(
1

2

)n+1

−
(
−
(
1

2

)n)
=

(
1

2

)n

×
(
−1

2
+ 1

)
on factorise par

(
1

2

)n

=

(
1

2

)n

× 1

2

> 0

Par conséquent, la suite (un) est strictement croissante

7. (un) définie par u0 = 1 et pour n ⩾ 0, un+1 = 2un + 3

À l’aide de la calculatrice, on conjecture que la suite (un) est croissante.
Démontrons ce résultat par récurrence.

• Pour tout n ⩾ 0, on note
P(n) : un+1 ⩾ un

• Initialisation :
Pour n = 0, on a u0 = 1 et u1 = 2× u0 + 3 = 5.
u1 ⩾ u0 donc P(0) est vraie.

• Hérédité :
Soit k ∈ N tel que P(k) est vraie.
Autrement dit, on suppose que uk+1 ⩾ uk.
On veut démontrer que P(k + 1) est vraie, c’est-à-dire :

uk+2 ⩾ uk+1



On a :

uk+1 ⩾ uk d’après l’hypothèse de récurrence
=⇒ 2× uk+1 ⩾ 2× uk

=⇒ 2× uk+1 + 3 ⩾ 2× uk + 3

=⇒ uk+2 ⩾ uk+1

Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que pour tout n ∈ N, un+1 ⩾ un

On en déduit donc que la suite (un) est croissante

8. (un) définie par u0 = 80 et pour n ⩾ 0, un+1 = 0, 5un + 30

À l’aide de la calculatrice, on conjecture que la suite (un) est décroissante.
Démontrons ce résultat par récurrence.

• Pour tout n ⩾ 0, on note
P(n) : un+1 ⩽ un

• Initialisation :
Pour n = 0, on a u0 = 80 et u1 = 0, 5× u0 + 30 = 70.
u1 ⩽ u0 donc P(0) est vraie.

• Hérédité :
Soit k ∈ N tel que P(k) est vraie.
Autrement dit, on suppose que uk+1 ⩽ uk.
On veut démontrer que P(k + 1) est vraie, c’est-à-dire :

uk+2 ⩽ uk+1

On a :

uk+1 ⩽ uk d’après l’hypothèse de récurrence
=⇒ 0, 5× uk+1 ⩽ 0, 5× uk

=⇒ 0, 5× uk+1 + 30 ⩽ 0, 5× uk + 30

=⇒ uk+2 ⩽ uk+1

Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que pour tout n ∈ N, un+1 ⩽ un

On en déduit donc que la suite (un) est décroissante



2 Feuille d’exercices
Exercice 1
• Pour tout n ∈ N, on pose :

P (n) : un ⩽ 1

• Initialisation :
Pour n = 0, on a u0 = −1 ⩽ 1 donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que uk ⩽ 1.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+1 ⩽ 1.
On a :

uk ⩽ 1 d’après l’hypothèse de récurrence
0, 2uk ⩽ 0, 2× 1

0, 2uk + 0, 6 ⩽ 0, 2 + 0, 6

uk+1 ⩽ 0, 8 ⩽ 1

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, un ⩽ 1 .

Exercice 2
• Pour tout n ∈ N, on pose :

P (n) : vn = 2× 3n + 1

• Initialisation :
Pour n = 0, on a d’une part v0 = 3 et d’autre part 2× 30 + 1 = 3.
On a bien égalité donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que vk = 2× 3k + 1.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que vk+1 = 2× 3k+1 + 1.
On a :

vk+1 = 3vk − 2

vk+1 = 3×
(
2× 3k + 1

)
− 2 d’après l’hypothèse de récurrence

vk+1 = 2× 3k × 3 + 3− 2

vk+1 = 2× 3k+1 + 1

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, vn = 2× 3n + 1 .

Exercice 5
• Pour tout n ∈ N, on pose :

P (n) : 0 ⩽ wn ⩽ 4

• Initialisation :
Pour n = 0, on a w0 = 0 donc 0 ⩽ w0 ⩽ 4.
Par conséquent, P (0) est vraie.



• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que 0 ⩽ wk ⩽ 4.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que 0 ⩽ wk+1 ⩽ 4.
On a :

0 ⩽ wk ⩽ 4 d’après l’hypothèse de récurrence
0, 5× 0 ⩽ 0, 5wk ⩽ 0, 5× 4

0 + 8 ⩽ 0, 5wk + 8 ⩽ 2 + 8
√
8 ⩽

√
0, 5wk + 8 ⩽

√
10 car la fonction racine carrée est croissante sur [0;+∞[

0 ⩽
√
8 ⩽ wk+1 ⩽

√
10 ⩽ 4

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, 0 ⩽ wn ⩽ 4 .

• Composer une inégalité par une fonction croissante préserve son sens.
• Composer une inégalité par une fonction décroissante change son sens.
Cet argument est le plus important de la récurrence précédente et il ne faut surtout pas l’oublier !

Exercice 6
3. • Pour tout n ∈ N, on pose :

P (n) : 13 + 23 + . . .+ n3 =
n2(n+ 1)2

4

• Initialisation :
Pour n = 0, la somme de gauche est égale à 0.
D’autre part, le terme de droite vaut 02×(0+1)2

4 = 0.
On a bien égalité donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie.

Autrement dit, on suppose que 13 + 23 + . . .+ k3 =
k2(k + 1)2

4
.

On veut démontrer que P (k + 1) est vraie, c’est-à-dire que :

13 + 23 + . . .+ k3 + (k + 1)3 =
(k + 1)2(k + 2)2

4

On a :

13 + 23 + . . .+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3 d’après l’hypothèse de récurrence

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2

(
k2 + 4(k + 1)

)
4

=
(k + 1)2

(
k2 + 4k + 4

)
4

=
(k + 1)2(k + 2)2

4

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, 13 + 23 + . . .+ n3 =
n2(n+ 1)2

4



Exercice 10
1. • Pour tout n ∈ N∗, on pose

P (n) : vn =
n

3n

• Initialisation :
Pour n = 1, on a d’une part v1 = 1

3 et d’autre part 1
31

= 1
3 .

On a bien égalité donc P (1) est vraie.
• Hérédité :

Soit k ∈ N∗ tel que P (k) est vraie. Autrement dit, on suppose que vk = k
3k

.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que vk+1 =

k+1
3k+1 .

On a :

vk+1 =
k + 1

3k
vk

vk+1 =
k + 1

3k
× k

3k
d’après l’hypothèse de récurrence

vk+1 =
k + 1

3k+1
car k ̸= 0

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n ⩾ 1, vn =
n

3n
.

2. Pour tout n ∈ N∗, on a vn =
n

3n
> 0 car n > 0 et 3n > 0.

De plus, pour tout n ∈ N∗,
vn+1

vn
=

n+ 1

3n+1
× 3n

n
=

n+ 1

3n

Puisque n ≥ 1, alors 3n > n+ n ≥ n+ 1 donc n+ 1

3n
< 1.

On vient de prouver que pour tout n ⩾ 1, vn+1

vn
< 1.

En conclusion, la suite (vn) est décroissante .
3. A l’aide de la calculatrice, on peut conjecturer que, pour tout n ∈ N∗, on a :

0 ≤ vn ≤ 1

3

— On sait déjà que (vn) est décroissante, et on sait que v1 =
1

3
. Pour tout n ∈ N∗, on a donc vn ≤ 1

3
.

— On a également déjà prouvé que pour tout n ∈ N∗, on a vn ≥ 0 car, par définition, vn =
n

3n
.

En conclusion, pour tout n ∈ N∗, on a bien 0 ≤ vn ≤ 1

3
.

Exercice 11
1. Le terme un fournit le nombre de milliers d’arbres en 2020 + n, donc u0 fournit le nombre de milliers d’arbres en

2020 + 0 = 2020. D’après l’énoncé, ce nombre d’arbres est de 50 000, soit 50 milliers, d’où u0 = 50 .
De plus, chaque année, on sait que 5% des un arbres sont retirés, et que 3 000 nouveaux sont ajoutés.

D’où un+1 =

(
1− 5

100

)
un + 3 = 0, 95un + 3 .

2. Le tableau de valeurs de la calculatrice permet de conjecturer que la suite (un) est strictement croissante.
Prouvons le par récurrence.
• Pour tout n ∈ N, on pose

P (n) : un+1 > un



• Initialisation :
Pour n = 0, on a u0 = 50 et u1 = 0, 95× 50 + 3 = 50, 5.
Ainsi u1 > u0, donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que uk+1 > uk.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+2 > uk+1.
On a :

uk+1 > uk d’après l’hypothèse de récurrence
0, 95uk+1 > 0, 95uk

0, 95uk+1 + 3 > 0, 95uk + 3

uk+2 > uk+1

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, un+1 > un .

On en déduit que la suite (un) est bien strictement croissante .
3. • Pour tout n ∈ N, on pose

P (n) : un = 60− 10× 0, 95n

• Initialisation :
Pour n = 0, on a d’une part u0 = 50 et d’autre part 60− 10× 0, 950 = 50.
On a bien égalité donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que uk = 60− 10× 0, 95k.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+1 = 60− 10× 0, 95k+1.
On a :

uk+1 = 0, 95uk + 3

uk+1 = 0, 95×
(
60− 10× 0, 95k

)
+ 3 d’après l’hypothèse de récurrence

uk+1 = 57− 10× 0, 95k+1 + 3

uk+1 = 60− 10× 0, 95k+1

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, un = 60− 10× 0, 95n .
4. L’année 2026 correspond au rang n = 6 et u6 = 60− 10× 0, 956 ≈ 52, 649.

Il y aura donc environ 52 649 arbres dans la forêt en 2026 selon ce modèle.
5. (a) Voici deux propositions de programme qui fonctionnent :

u = 50
n = 0
while u < 55 :

u = 0.95 ∗ u+ 3
n = n+ 1

print(n)

u = 50
n = 0
while u < 55 :

n = n+ 1
u = 60− 10 ∗ 0.95 ∗ ∗n

print(n)

(b) On a u14 ≈ 54, 867 < 55 et u15 ≈ 55, 123 > 55.
L’algorithme renverra donc la valeur 15.

6. On a prouvé que, pour tout n ∈ N, on a un = 60− 10× 0, 95n.
Or, −10× 0, 95n < 0, donc 60− 10× 0, 95n < 60.
Par conséquent, pour tout entier naturel n, on a un < 60 .

7. On observe sur le tableau de valeurs de la calculatrice que les termes de la suite (un) tendent de plus en plus vers
60 (sans jamais l’atteindre d’après la question 6).

Cela signifie que, au fil des années, le nombre d’arbres dans la forêt va tendre vers 60 000 arbres .



Exercice 12
Démontrer que, pour tout entier naturel n, B = n3 − n est un multiple de 3.

Astuce :

On peut tout d’abord remarquer que :

n3 − n = n(n2 − 1) = n(n− 1)(n+ 1) = (n− 1)n(n+ 1)

Ainsi, ce nombre est le produit de trois entiers consécutifs dont l’un est nécessairement un multiple de 3 donc le produit
l’est aussi.

Méthode 1 : On raisonne par récurrence.

• Pour tout n ∈ N, on note P(n) : « n3 − n est un multiple de 3 ».

• Initialisation :
Pour n = 0, on a n3 − n = 03 − 0 = 0 qui est bien un multiple de 3 donc P(0) est vraie.

• Hérédité :
Soit k ∈ N tel que P(k) est vraie.
Autrement dit, on suppose que k3 − k est un multiple de 3.
On veut démontrer que P(k + 1) est vraie, c’est-à-dire :

(k + 1)3 − (k + 1) est un multiple de 3

On a :

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1

= k3 + 3k2 + 2k

= k3 − k + 3k2 + 3k

= (k3 − k) + 3(k2 + k)

= 3K1 + 3K2 avec K1, K2 ∈ Z d’après l’hypothèse de récurrence

Finalement, (k + 1)3 − (k + 1) est bien un multiple de 3. Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que, pour tout n ∈ N,

k3 − k est un multiple de 3

Méthode 2 : On construit un tableau de congruences modulo 3.

n ≡ . . . [3] 0 1 2

n− 1 ≡ . . . [3] 2 0 1

n+ 1 ≡ . . . [3] 1 2 0

n(n−1)(n+1) ≡ . . . [3] 0 0 0

Dans tous les cas, n3 − n = n(n− 1)(n+ 1) ≡ 0 [3] donc B est bien un multiple de 3.

Méthode 3 : On raisonne par disjonction de cas.

Soit n un entier naturel.



• Cas 1 : Il existe k ∈ Z tel que n = 3k.
Dans ce cas, on a alors B = 3(k(3k − 1)(3k + 1)).
B est donc divisible par 3.

• Cas 2 : Il existe k ∈ Z tel que n = 3k + 1.
Dans ce cas, on alors B = (3k + 1)(3k + 1− 1)(3k + 1 + 1) = 3(k(3k + 1)(3k + 2)).
B est donc divisible par 3.

• Cas 3 : Il existe k ∈ Z tel que n = 3k + 2.
Dans ce cas, on alors N = (3k + 2)(3k + 2− 1)(3k + 2 + 1) = 3((3k + 2)(3k + 1)(k + 1)).
B est donc divisible par 3.

Ainsi, pour tout entier naturel n, B est bien un multiple de 3.

Exercice 13
C’est plutôt bien expliqué sur cet article de mathsenjeans :
https://www.mathenjeans.be/documents/articles/2016_2017/Tour_de_hanoi.pdf

Exercice 14
Le principe de la récurrence double est le suivant : pour l’hérédité, au lieu d’utiliser le terme précédent, on va
utiliser les deux termes précédents. La conséquence sur l’initialisation est qu’on va alors avoir besoin des deux
premiers termes.

• Pour tout n ∈ N, on pose :
P (n) : un = 1 + 2n

• Initialisation :
On démontre ici que P (0) et P (1) sont vraies.
1 + 20 = 2 = u0 et 1 + 21 = 3 = u1 donc P (0) et P (1) sont vraies.

• Hérédité :
Soit k ∈ N tel que P (k) et P (k + 1) sont vraies. Autrement dit, on suppose que uk = 1 + 2k et uk+1 = 1 + 2k+1.
On veut démontrer que P (k + 2) est vraie, c’est-à-dire que uk+2 = 1 + 2k+2.
On a :

uk+2 = 3uk+1 − 2uk

uk+2 = 3× (1 + 2k+1)− 2× (1 + 2k) d’après l’hypothèse de récurrence
uk+2 = 3 + 3× 2k+1 − 2− 2× 2k

uk+2 = 1 + 3× 2k+1 − 2k+1

uk+2 = 1 + 2× 2k+1

uk+2 = 1 + 2k+2

Par conséquent, P (k + 2) est vraie.
• Conclusion :

Par le principe de récurrence double, on a démontré que, pour tout entier naturel n, un = 1 + 2n .

Exercice 15 (très difficile)

• Pour tout n ∈ N∗, on pose :

P (n) : « Il existe deux entiers p et q tels que n = 2p(2q + 1) »

• Initialisation :
Pour n = 1, on a 1 = 20(2× 0 + 1). La propriété est donc vraie en prenant p = 0 et q = 0.
Par conséquent, P (1) est vraie.

https://www.mathenjeans.be/documents/articles/2016_2017/Tour_de_hanoi.pdf


• Hérédité :
Soit n ∈ N∗ tel que P (n) est vraie pour tout k ∈ [[1;n]].

Hors programme : C’est ça la spécificité de la récurrence forte. La seule différence avec une récurrence classique
est que l’on suppose que P (k) est vraie pour tous les entiers k compris entre 1 et n au sens large, alors que
pour la récurrence normale, on considère seulement un entier naturel k (et pas tous les entiers naturels k
compris entre 1 et n).

Autrement dit, on suppose que, pour chaque entier k ∈ [[1;n]], il existe deux entiers p et q tels que k = 2p(2q + 1).
On veut démontrer que P (n+ 1) est vraie, c’est-à-dire qu’il existe deux entiers p et q tels que n+ 1 = 2p(2q + 1).

On a deux cas selon que n+ 1 soit pair ou impair.

• Si n+ 1 est pair, alors n+ 1 = 2× n+ 1

2
.

On a 1 ⩽ n+ 1

2
⩽ n donc on peut utiliser l’hypothèse de récurrence sur k =

n+ 1

2
.

Il existe donc deux entiers p′ et q′ tels que n+ 1

2
= 2p

′
(2q′ + 1).

Ainsi, en posant p = p′ + 1 et q′ = q, on a bien n+ 1 = 2p(2q + 1).
• Si n est impair, alors en posant p = 0 et q =

n

2
, on a bien n+ 1 = 2p(2q + 1).

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence forte, on a démontré que :
pour tout entier naturel n, il existe deux entiers p et q tels que n = 2p(2q + 1) .



3 Exercices du manuel
Exercice 1 page 126
1. u1 = 8 u2 = 11 u3 = 14 u5 = 20

2. u1 = 1 u2 = 3 u3 = 7 u5 = 31

3. u1 =
1
2 u2 =

2
3 u3 =

3
4 u5 =

5
6

4. u1 = 9 u2 = 25 u3 = 57 u5 = 249

5. Lorsque n = 0, on a u0+1 = 3× u0 − 2× 0 donc u1 = 3× 2− 2× 0 = 6.
Lorsque n = 1, on a u1+1 = 3× u1 − 2× 1 donc u2 = 3× 6− 2× 1 = 16.
Lorsque n = 2, on a u2+1 = 3× u2 − 2× 2 donc u3 = 3× 16− 2× 2 = 44.
Lorsque n = 3, on a u3+1 = 3× u3 − 2× 3 donc u4 = 3× 44− 2× 3 = 126.
Lorsque n = 4, on a u4+1 = 3× u4 − 2× 4 donc u5 = 3× 126− 2× 4 = 370.

Exercice 4 page 126
1. Pour tout entier naturel n, wn = 2− 3n.
2. Pour tout entier naturel n, wn = 18 + 5n.
3. Pour tout entier naturel n ⩾ 1, wn = 3

4 + (n− 1)× 1
2 = 1

4 + 1
2n.

Exercice 5 page 126
1. Pour tout entier naturel n, pn = 3× 4n.
2. Pour tout entier naturel n, pn = 1

2 × (−2)n.
3. Pour tout entier naturel n ⩾ 1, pn = 5×

(
1
2

)n−1.

Exercice 6 page 126
1. u0 = −2

u1 = 0, 5× u0 + 3 = 0, 5× (−2) + 3 = 2
u2 = 0, 5× u1 + 3 = 0, 5× 2 + 3 = 4

2. L’objectif de cette question est de déterminer une formule explicite de la suite (un).
La suite (un) n’étant ni arithmétique, ni géométrique, il n’existe aucune formule permettant d’obtenir immédiatement
une forme explicite de la suite (un). On utilise donc une suite auxiliaire (vn) qui s’avèrera géométrique afin d’y
parvenir.
(a) Pour tout n ∈ N,

vn+1 = un+1 − 6

= 0, 5un + 3− 6

= 0, 5un − 3

= 0, 5 (un − 6)

= 0, 5vn

De plus, v0 = u0 − 6 = −8.
Par conséquent, (vn) est une suite géométrique de raison q = 0, 5 et de premier terme v0 = −8.

(b) D’après ce qui précède, on en déduit que, pour tout n ∈ N,

vn = v0 × qn

vn = −8× 0, 5n

(c) Enfin, comme pour tout n ∈ N, vn = un − 6, alors un = vn + 6, d’où finalement

un = −8× 0, 5n + 6



Exercice 7 page 126
1. u1 = 250× 0, 9 + 35 = 260

En 2020, il y a 260 élèves inscrits dans l’école de musique.
u2 = 260× 0, 9 + 35 = 269
En 2021, il y a 269 élèves inscrits dans l’école de musique.

2. u1 − u0 = 260− 250 = 10 et u2 − u1 = 269− 260 = 9
Ainsi, u1 − u0 ̸= u2 − u1 donc la suite (un) n’est pas arithmétique.
u1
u0

=
260

250
= 1, 04 et u2

u1
=

269

260
≈ 1, 03

Ainsi, u1
u0

̸= u2
u1

donc la suite (un) n’est pas géométrique.

3. Pour tout n ∈ N, on a un+1 = 0, 9× un + 35 et u0 = 250.
D’après le tableau de valeur de la calculatrice, la suite (un) semble être croissante.

4. 2050 correspond à l’année 2019 + 31. Grâce à la calculatrice, on trouve u31 ≈ 346.



4 Autres exercices
Exercice plutôt sympathique (que les élèves de l’année dernière n’ont pas trouvé sympathique)
On considère la suite (un) définie par u1 = 1 et, pour tout entier naturel n ⩾ 1,

un+1 =
un√
u2n + 1

1. Calculer u2 et u3.
2. Conjecturer une expression de un en fonction de n.
3. Démontrer cette conjecture par récurrence.

1. u1 = 1

u2 =
u1√
u21 + 1

=
1√

12 + 1
=

1√
2

u3 =
u2√
u22 + 1

=

1√
2√(

1√
2

)2

+ 1

=

1√
2√

1

2
+ 1

=

1√
2√
3

2

=

1√
2√
3√
2

=
1√
2
×

√
2√
3
=

1√
3

2. On peut conjecturer que, pour tout entier naturel n ⩾ 1, un =
1√
n

.

3. • Pour tout n ∈ N∗, on pose
P (n) : un =

1√
n

• Initialisation :
Pour n = 1, on a u1 = 1 =

1√
1

.
Par conséquent, P (1) est vraie.

• Hérédité :
Soit k ∈ N∗ tel que P (k) est vraie. Autrement dit, on suppose que un =

1√
k

.

On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+1 =
1√
k + 1

.



On a :

uk+1 =
uk√
u2k + 1

=

1√
k√(

1√
k

)2

+ 1

d’après l’hypothèse de récurrence

=

1√
k√

1

k
+ 1

=

1√
k√

k + 1

k

=

1√
k√

k + 1√
k

=
1√
k
×

√
k√

k + 1

=
1√
k + 1

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n ⩾ 1, un =
1√
n

.

Exercice pas sympathique
On considère la suite (un) définie par u0 = 3 et, pour tout entier naturel n,

un+1 =
un − 2

2un + 5

Démontrer par récurrence que, pour tout entier naturel n,

un =
9− 8n

3 + 8n

• Pour tout n ∈ N, on pose
P (n) : un =

9− 8n

3 + 8n

• Initialisation :
Pour n = 0, on a 9− 8× 0

3 + 8× 0
=

9

3
= 3 = u0

Par conséquent, P (0) est vraie.
• Hérédité :

Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que uk =
9− 8k

3 + 8k
.

On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+1 =
9− 8(k + 1)

3 + 8(k + 1)
.



On a :

uk+1 =
uk − 2

2uk + 5

=

9− 8k

3 + 8k
− 2

2× 9− 8k

3 + 8k
+ 5

d’après l’hypothèse de récurrence

=

9− 8k − 2(3 + 8k)

3 + 8k
2(9− 8k) + 5(3 + 8k)

3 + 8k

=
9− 8k − 2(3 + 8k)

3 + 8k
× 3 + 8k

2(9− 8k) + 5(3 + 8k)

=
9− 8k − 2(3 + 8k)

2(9− 8k) + 5(3 + 8k)

=
9− 8k − 6− 16k

18− 16k + 15 + 40k

=
3− 24k

33 + 24k

On peut tout à fait arriver à court d’inspiration ici. Une bonne idée serait de partir de l’autre côté de l’égalité,
c’est-à-dire de 9−8(k+1)

3+8(k+1) , et de montrer qu’on tombe bien sur la même chose !

D’autre part,
9− 8(k + 1)

3 + 8(k + 1)
=

1− 8k

11 + 8k
=

(1− 8k)× 3

(11 + 8k)× 3
=

3− 24k

33 + 24k

Finalement, on en déduit que :
uk+1 =

9− 8(k + 1)

3 + 8(k + 1)

Par conséquent, P (k + 1) est vraie.
• Conclusion :

Par le principe de récurrence, on a démontré que, pour tout entier naturel n, un =
9− 8n

3 + 8n
.
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