
Chapitre 7 : Vecteurs, droites et plans de l’espace

1. Vecteurs de l’espace
1. 1. Définitions et premières propriétés

Définition 1.
Soient A et B deux points de l’espace.
On associe à la translation qui transforme A en B le vecteur −−→AB qui est caractérisé par :

• Sa direction : la droite (AB) et toutes les droites qui lui sont parallèles.
• Son sens : de A vers B.
• Sa norme : la longueur AB, noté ∥

−−→
AB∥.

Remarque 1.
• Le vecteur −→AA est le vecteur nul noté −→

0 .
• Deux vecteurs sont égaux s’ils ont la même direction, le même sens et la même norme.

Soient A, B, C et D quatre points de l’espace.
Alors −−→

AB =
−−→
CD si et seulement si ABDC est un parallélogramme.

Propriété 1. (Parallélogrammes et vecteurs)

Démonstration 1.
Si ABDC est un parallélogramme, alors ses côtés opposés sont parallèles et de même longueur, donc −−→

AB =
−−→
CD.

Réciproquement, si −−→AB =
−−→
CD, alors ABDC possède deux côtés opposés parallèles et de même longueur, c’est donc un parallé-

logramme.

Soit −→u un vecteur de l’espace. Alors pour tout point A de l’espace, il existe un unique point M tel que −→u =
−−→
AM .

On dit que −−→
AM est le représentant de −→u d’origine A.

Propriété 2. (Représentant)

Exemple 1.

1. 2. Opérations sur les vecteurs
Définition 2.
Soient −→u et −→v deux vecteurs de l’espace de représentants respectifs
−→u =

−−→
AB et −→v =

−→
AC. On définit la somme des vecteurs −→u et −→v , notée

−→u +−→v , par −→u +−→v =
−−→
AD, tel que ABDC soit un parallélogramme.

Relation de Chasles
Pour tous points A, B et C de l’espace, on a

−−→
AB +

−−→
BC =

−→
AC

Propriété 3.



Exemple 2. Compléter les points manquants :−−−→
. . . E +

−−−→
E . . . =

−−→
BC

−−→
A . . .+

−−−→
B . . . =

−→
AC

−−−→
O . . .+

−−−→
M . . . =

−−−→
. . . P

−−→
A . . .+

−−−→
D . . .+

−−−→
M . . . =

−→
AG

Exemple 3. Dire si l’on peut réduire ou non chacune des sommes suivantes grâce à la relation de Chasles :
a. −−→

AB +
−−→
BC b. −−→

AB +
−→
AC c. −−→

CO +
−→
OA

d. −−→
CO +

−→
AC e. −−→

ED +
−−→
DE f. −→

AF +
−−→
BC +

−→
CA

Définition 3.
La produit d’un vecteur −→u par un nombre réel k, noté k−→u , est défini en distinguant trois cas.

• Si k = 0 ou −→u = 0, alors k−→u = 0.
• Si k > 0 et −→u ̸= 0, alors k−→u a même direction et même sens que −→u et sa norme est k∥−→u ∥.
• Si k < 0 et −→u ̸= 0, alors k−→u a même direction et un sens contraire à celui de −→u et sa norme est (−k) ∥−→u ∥.

Exemple 4.

Définition 4.
Soient −→u et −→v deux vecteurs de l’espace.
On dit que −→u et −→v sont des vecteurs colinéaires si il existe un réel k tel que −→u = k−→v ou −→v = k−→u .

Remarque 2.
• −→

0 est colinéaire à tout vecteur −→u car −→0 = 0.−→u .
• Deux vecteurs non nuls sont colinéaires si et seulement si ils ont la même direction.

Exemple 5.
On considère le tétraèdre ABCD représenté ci-contre.
Soient M et N les points tels que −−→

BM = 1
4

−−→
BA et −−→CN = 3

−−→
BC.

Prouver que les vecteurs −−→
MC et −−→AN sont colinéaires.
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2. Droites et plans de l’espace
2. 1. Caractérisations vectorielles d’une droite et d’un plan

Définition 5.
Soient A et B deux points distincts de l’espace. La droite (AB) est l’ensemble des points M tels que −−→

AM et −−→
AB

soient colinéaires, c’est-à-dire pour lesquels il existe un réel k tel que −−→
AM = k

−−→
AB.

Remarque 3.
Une droite (d) de l’espace est donc définie par un point A appartenant à la droite (d) et un vecteur −→u admettant cette
droite (d) comme direction. On dit dans ce cas que −→u est un vecteur directeur de la droite (d).

Exemple 6.
Soient M , N et P trois points de l’espace non alignés.
On considère les points I et J tels que :

−−→
MI =

1

2

−−→
MN et −−→

NJ = 3
−−→
MP − 2

−−→
MN

1 Faire une figure.
2 Montrer que le point P appartient à la droite (IJ).

Définition 6.
Soient A, B et C trois points non alignés. Le plan (ABC) est l’ensemble des points M pour lesquels il existe deux
réels x et y tels que −−→

AM = x
−−→
AB + y

−→
AC.

Remarque 4.
Un plan P est donc défini par un point A appartenant au plan P, et deux vecteurs non colinéaires −→u et −→v .
On dit alors que −→u et −→v sont des vecteurs directeurs du plan P.

Définition 7.
On dit que des points sont coplanaires s’il existe un plan qui les contient tous.

Trois points A, B et C sont toujours coplanaires.
Propriété 4.

2. 2. Vecteurs coplanaires
Définition 8.
Soient u⃗, −→v et −→w trois vecteurs distincts et A, B, C et D quatre points tels que −−→

AB = −→u , −→AC = −→v et −−→AD = −→w .
On dit que les vecteurs −→u , −→v et −→w sont coplanaires si les points A, B, C et D sont coplanaires.

Exemple 7.



Soient −→u , −→v et −→w trois vecteurs tels que −→u et −→v ne soient pas colinéaires.
Alors −→u , −→v et −→w sont coplanaires si, et seulement si, il existe deux réels x et y tels que −→w = x−→u + y−→v .

Propriété 5. (Caractérisation de vecteurs coplanaires)

Définition 9.
On appelle combinaison linéaire de −→u et −→v toute relation de la forme x−→u + y−→v .

Exemple 8.
On considère la pyramide ABCDE ci-contre, de sommet E et dont la base
ABCD est un parallélogramme.
On note −→u =

−−→
AB, −→v = 2

−−→
AD +

−−→
DE et −→w =

−→
AC +

−→
AE.

Prouver que les vecteurs −→u , −→v et −→w sont coplanaires.
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3. Positions relatives de droites et de plans
3. 1. Positions relatives de deux droites

Définition 10.
Soit d et d′ deux droites de l’espace. Quatre cas sont lors possibles :

d et d′ sont strictement parallèles :
elles n’ont aucun point en commun

d et d′ sont sécantes en un unique point

d et d′ sont confondues

d et d′ sont non coplanaires : elle ne sont ni
parallèles, ni sécantes

Exemple 9.

Exemple 10.
On considère un cube ABCDEFGH . I, J et L sont les milieux respectifs des arêtes [EH], [FG] et [GC].
O et K sont deux points tels que −→

IO =
1

2

−→
IJ et −−→DK =

3

2

−−→
DC.

Étudier les positions relatives des couples de droites suivants :
1 (IO) et (DK). 2 (BJ) et (EF ). 3 (JL) et (BC).



3. 2. Positions relatives d’une droite et d’un plan
Définition 11.
Soient (d) une droite et P un plan de l’espace. Alors :

• Si (d) et P se coupent en un seul point, on dit que (d) et P sont sécants.
• Sinon, on dit que (d) et P sont parallèles :

— strictement si (d) et P n’ont aucun point en commun,
— et sinon, on dit que (d) est incluse dans P, ou encore qu’elle appartient à P.

Exemple 11.

Exemple 12.
On considère un tétraèdre ABCD et on note :

• I le point de [AB] tel que AI =
2

3
AB.

• J le point de [BC] tel que AJ =
1

4
AC.

• K le point de [AD] tel que AK =
1

3
AD.

Démontrer que la droite (IJ) est sécante au plan (BCD) en un point. On note ce point E.

3. 3. Positions relatives de deux plans
Définition 12.
Soient P et P ′ deux plans de l’espace. Alors :

• Ces plans peuvent être parallèles :
— strictement si ils n’ont aucun point en commun,
— et confondus si tous les points de P appartiennent à P ′, ou si la réciproque est vraie.

• Si ces plans ne sont pas parallèles, alors ils sont sécants, et leur intersection est une droite.



Exemple 13.

Exemple 14.
On considère un cube ABCDEFGH . I et J sont les milieux respectifs des arêtes [AB] et [CD].
Étudier les positions relatives des couples de plans suivants :

1 (AIE) et (BIG). 2 (ADI) et (BJC). 3 (HEF ) et (BJC).

Soient P et P ′ deux plans de l’espace.
Alors P et P ′ sont parallèles si et seulement si il existe deux droites sécantes de
P qui sont parallèles à deux droites sécantes de P ′, c’est-à-dire si et seulement
si il existe deux vecteurs non colinéaires −→u et −→v qui sont directeurs de P et de
P ′ en même temps.

Propriété 6.

Soient P et P ′ deux plans parallèles.
Alors tout plan coupant l’un de ces deux plans coupe aussi l’autre, et les droites
d’intersections ainsi obtenues sont parallèles l’une à l’autre.

Propriété 7.

Soient P et P ′ deux plans. Soient (d) une droite incluse dans P et (d′) une droite
incluse dans P ′, telles que (d)//(d′).
Si P et P ′ sont sécants en une droite (∆), alors (∆)//(d)//(d′).

Théorème 8. (Théorème du toit)

Exemple 15.
On considère la pyramide SABCD ci-contre, de sommet S et de base le parallélogramme
ABCD. Les points I, J et K sont respectivement les milieux de [SA], [SB] et [SC].
Déterminer l’intersection de (CIJ) et (ABC).
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4. Bases et repères de l’espace
4. 1. Bases de l’espace

Définition 13.
Une base de l’espace est la donnée de trois vecteurs non coplanaires qu’on note (

−→
i ,

−→
j ,

−→
k ).

Remarque 5. Les vecteurs d’une bases de l’espace sont donc tous non nuls et sont non colinéaires deux à deux.

Soit (−→i ,
−→
j ,

−→
k ) une base de l’espace.

Pour tout vecteur −→u , il existe un unique triplet (x; y; z) de réels tels que −→u = x
−→
i + y

−→
j + z

−→
k .

On dit que (x; y; z) sont les coordonnées du vecteur −→u dans cette base, et on le note −→u

x
y
z

.

Propriété 9. (Coordonnées d’un vecteur dans une base)

Exemple 16.
On considère le cube ABCDEFGH ci-contre.
Prouver que (

−−→
AB ,

−→
AE ,

−−→
AD ) est une base de l’espace.

Déterminer les coordonnées de −−→
AH et −−→BH dans cette base.
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Soient −→u

x
y
z

 et −→v

x′

y′

z′

 deux vecteurs dont les coordonnées sont données dans une base de l’espace. On a alors :

(−→u +−→v )

x+ x′

y + y′

z + z′

 Pour tous réels k, (k−→u )

kx
ky
kz



Propriété 10. (Coordonnées de vecteurs particuliers)

4. 2. Repères de l’espace
Définition 14.
Un repère de l’espace est la donnée d’un point O est d’une base (

−→
i ,

−→
j ,

−→
k ).

On note alors (O ;
−→
i ,

−→
j ,

−→
k ) ce repère, et on dit que O en est l’origine.

Soit (O ;
−→
i ,

−→
j ,

−→
k ) un repère de l’espace.

Alors pour tout point M , il existe un unique triplet (x; y; z) de réels tels que −−→
OM = x

−→
i + y

−→
j + z

−→
k .

Le triplet (x; y; z) est appelé coordonnées de M .
On dit que x est l’abscisse de M , que y est son ordonnée, et que z est sa cote.

Propriété 11. (Coordonnées, abscisse, ordonnée, cote d’un point)



Soit (O ;
−→
i ,

−→
j ,

−→
k ) un repère de l’espace et soient −→u

x
y
z

 et −→v

x′

y′

z′

 deux vecteurs, et A(xA; yA; zA) et

B(xB; yB; zB) deux points de l’espace. On a alors :

• Le vecteur −−→AB a pour coordonnées −−→
AB

xB − xA
yB − yA
zB − zA

.

• Le milieu M du segment [AB] a pour coordonnées M

(
xA + xB

2
;
yA + yB

2
;
zA + zB

2

)
.

Propriété 12.

Exemple 17.
On considère un repère de l’espace (O ;

−→
i ,

−→
j ,

−→
k ) et les quatre points A(−3; 6; 7), B(−4; 5; 2), C(−3; 4; 3) et

D(1;−2; 3) dans cette base. Prouver que les points A, B, C et D sont coplanaires.
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