CHAPITRE 7 : VECTEURS, DROITES ET PLANS DE L’ESPACE I

1. VECTEURS DE L’ESPACE
1. 1. DEFINITIONS ET PREMIERES PROPRIETES

Définition 1.
Soient A et B deux points de |'espace.
On associe a la translation qui transforme A en B le vecteur zﬁ qui est caractérisé par :

e Sa direction : la droite (AB) et toutes les droites qui lui sont paralléles.
e Son sens : de A vers B.
e Sa norme : la longueur AB, noté HEH

Remarque 1.
— , =
e Le vecteur AA est le vecteur nul noté 0.
e Deux vecteurs sont égaux s'ils ont la méme direction, le méme sens et la méme norme.

Propriété 1. (Parallélogrammes et vecteurs))

Soient A, B, C et D quatre points de I'espace.
Alors ﬁ = CD si et seulement si ABDC' est un parallélogramme.

Démonstration 1.

Si ABDC est un parallélogramme, alors ses cotés opposés sont paralléles et de méme longueur, donc 1@ = C’B.
Réciproquement, si AB = CD, alors ABDC' posséde deux cOtés opposés paralléles et de méme longueur, c’est donc un parallé-
logramme.

Propriété 2. (Représenta nt))

—
Soit @ un vecteur de I'espace. Alors pour tout point A de I'espace, il existe un unique point M tel que U = AM.
On dit que AM est le représentant de @ d’origine A.

Exemple 1.

1. 2. OPERATIONS SUR LES VECTEURS

Définition 2.

Soient W et U deux vecteurs de I'espace de représentants respectifs

U = E et U = ﬁ On définit la somme des vecteurs 7 et 7, notée
U+, par U+ = E tel que ABDC soit un parallélogramme.

( Propriété 3. }

Relation de Chasles
Pour tous points A, B et C de I'espace, on a

AB + BC = AC




Exemple 2. Compléter les points manquants :
. L+E... =BC A +B...=AC O +M...=_..P A.+D.. +M...=A4C

Exemple 3. Dire si I'on peut réduire ou non chacune des sommes suivantes grace a la reIati_o? de Chasles :
a. ﬁ—i—ﬁ b. ﬁ—hﬁ c. C@—FOA

d. CO+AC e. ED+ DE f. AP+ BC+CA
Définition 3.
La produit d'un vecteur U par un nombre réel k, noté k7, est défini en distinguant trois cas.
e Sik=0ouw =0, alors k' = 0.
e Sik>0et @ #0, alors ki a méme direction et méme sens que et sa norme est k|||
e Sik<O0et @ #0, alors ki a méme direction et un sens contraire 3 celui de % et sa norme est (—Fk) ||/ ||.

Exemple 4.

Définition 4.
Soient W et U deux vecteurs de I'espace.
On dit que @ et U sont des vecteurs colinéaires si il existe un réel k tel que W = kv ou ¥ = k.

Remarque 2. o
e 0 est colinéaire 3 tout vecteur u car 0 = 0.7/.
e Deux vecteurs non nuls sont colinéaires si et seulement si ils ont la méme direction.

Exemple 5.

On consideére le tétragdre ABCD représenté ci-contre.

Soient M et N les points tels que BM = %BA et C’N = 338.
? —

Prouver que les vecteurs M C et AN sont colinéaires.



2. DROITES ET PLANS DE L’ESPACE
2. 1. CARACTERISATIONS VECTORIELLES D’UNE DROITE ET D'UN PLAN

Définition 5.

s
Soient A et B deux points distincts de I'espace. La droite (AB) est I'ensemble des points M tels que AM et @
soient colinéaires, c'est-a-dire pour lesquels il existe un réel k tel que AM = kAB.

Remarque 3.
Une droite (d) de I'espace est donc définie par un point A appartenant a la droite (d) et un vecteur U admettant cette
droite (d) comme direction. On dit dans ce cas que u est un vecteur directeur de la droite (d).

Exemple 6.
Soient M, N et P trois points de I'espace non alignés.
On consideére les points I et J tels que :

m:%m et NJ=3MD—2MN

® Faire une figure.
@ Montrer que le point P appartient 3 la droite (1J).

Définition 6.
Soient A, B et C trois Eoints non alignés. Le plan (ABC) est I'ensemble des points M pour lesquels il existe deux
réels x et y tels que AM = :c@ + yﬁ.

Remarque 4.
Un plan P est donc défini par un point A appartenant au plan P, et deux vecteurs non colinéaires o et ¥.
On dit alors que W et U sont des vecteurs directeurs du plan P.

Définition 7.
On dit que des points sont coplanaires s'il existe un plan qui les contient tous.

Propriété 4.

Trois points A, B et C' sont toujours coplanaires.

2. 2. VECTEURS COPLANAIRES

Définition 8.
Soient 7, o et W trois vecteurs distincts et A, B, C et D quatre points tels que E = 7 zﬁ = et E =,
On dit que les vecteurs U, U et W sont coplanaires si les points A, B, C et D sont coplanaires.

Exemple 7.



,_C Propriété 5. (Caractérisation de vecteurs coplanaires))

Soient @, U et W trois vecteurs tels que U et U ne soient pas colinéaires.
Alors i, ¥ et & sont coplanaires si, et seulement si, il existe deux réels x et y tels que W=zxd + y?.

.

Définition 9.
On appelle combinaison linéaire de U et ¥ toute relation de la forme 27 + y?.

Exemple 8.
On considere la pyramide ABCDE ci-contre, de sommet E et dont la base E
ABCD est un parallélogramme.

Onnoteﬁzﬁ,7:2ﬁ+ﬁetﬁ:ﬁ+ﬁ.

Prouver que les vecteurs , ¥ et W sont coplanaires. C

3. POSITIONS RELATIVES DE DROITES ET DE PLANS
3. 1. POSITIONS RELATIVES DE DEUX DROITES

Définition 10.
Soit d et d’ deux droites de I'espace. Quatre cas sont lors possibles :

d et d’ sont strictement paralléles : d et d’ sont confondues
elles n'ont aucun point en commun

d et d’ sont sécantes en un unique point d et d’ sont non coplanaires : elle ne sont ni
paralleles, ni sécantes

Exemple 9.

Exemple 10.
On considére un cube ABCDEFGH. I, J et L sont les milieux respectifs des arétes [EH|, [FG| et [GC].

1 -— 3
O et K sont deux points tels que .@ = §ﬁ et DK = 51)7?

Etudier les positions relatives des couples de droites suivants :
® (10) et (DK). @ (BJ) et (EF). ® (JL) et (BO).



3. 2. POSITIONS RELATIVES D’UNE DROITE ET D'UN PLAN
Définition 11.
Soient (d) une droite et P un plan de I'espace. Alors :
e Si(d) et P se coupent en un seul point, on dit que (d) et P sont sécants.
e Sinon, on dit que (d) et P sont paralléles :
— strictement si (d) et P n’ont aucun point en commun,

— et sinon, on dit que (d) est incluse dans P, ou encore qu'elle appartient a P.

Exemple 11.

Exemple 12.
On considére un tétraédre ABCD et on note :

2

= [ le point de [AB] tel que AI = gAB.
1

= J le point de [BC] tel que AJ = EAC'

1
» K le point de [AD] tel que AK = §AD'

Démontrer que la droite (I.J) est sécante au plan (BCD) en un point. On note ce point E.

3. 3. POSITIONS RELATIVES DE DEUX PLANS
Définition 12.
Soient P et P’ deux plans de I'espace. Alors :
e Ces plans peuvent étre paralléles :
— strictement si ils n'ont aucun point en commun,
— et confondus si tous les points de P appartiennent a P’, ou si la réciproque est vraie.

e Si ces plans ne sont pas paralléles, alors ils sont sécants, et leur intersection est une droite.




Exemple 13.

Exemple 14.
On consideére un cube ABCDEFGH. I et J sont les milieux respectifs des arétes [AB] et [C'D].
Etudier les positions relatives des couples de plans suivants :

® (AIE) et (BIG). @ (ADI) et (BJC). ® (HEF) et (BJC).

Propriété 6.

( } ~
Soient P et P’ deux plans de I'espace.
Alors P et P’ sont paralléles si et seulement si il existe deux droites sécantes de
P qui sont paralléles a deux droites sécantes de P/, c'est-a-dire si et seulement

si il existe deux vecteurs non colinéaires @ et U qui sont directeurs de P et de

P’ en méme temps.
G J

Propriété 7.

Soient P et P’ deux plans paralléles.
Alors tout plan coupant I'un de ces deux plans coupe aussi I'autre, et les droites
d’intersections ainsi obtenues sont paralléles I'une a |'autre.

Théoreme 8. (Théoréme du toit))

Soient P et P’ deux plans. Soient (d) une droite incluse dans P et (d') une droite
incluse dans P, telles que (d) //(d').
Si P et P’ sont sécants en une droite (A), alors (A)//(d) J/(d').

Exemple 15.

On considére la pyramide SABCD ci-contre, de sommet S et de base le parallélogramme
ABCD. Les points I, J et K sont respectivement les milieux de [SA], [SB] et [SC].
Déterminer I'intersection de (C1J) et (ABC).




4. BASES ET REPERES DE L’ESPACE
4.1. BASES DE L’ESPACE

Définition 13.
’ , . . , —-
Une base de I'espace est la donnée de trois vecteurs non coplanaires qu'on note ( i

- =
Jj,k

).

Remarque 5. Les vecteurs d'une bases de I'espace sont donc tous non nuls et sont non colinéaires deux a deux.

9 9

/_( Propriété 9. (Coordonnées d'un vecteur dans une base))

e e Sy o ,
Soit (@, j, k) une base de |'espace.
Pour tout vecteur ©, il existe un unique triplet (z;y; z) de réels tels que U =xi+ yj] +zk.

X
On dit que (z;y; z) sont les coordonnées du vecteur U dans cette base, et on le note @ Y
z
-
Exemple 16.

On considere le cube ABCDEFGH ci-contre.
Prouver que (AB, AE, AD ) est une base de |'espace.

Déterminer les coordonnées de Aﬁ et Bﬁ dans cette base.

Propriété 10. (Coordonnées de vecteurs particuliers))

\
53 il
Soient U y | et o y' | deux vecteurs dont les coordonnées sont données dans une base de I'espace. On a alors :
z 2!
z+ kx
(L +7) |y+y Pour tous réels k, (k) | ky
z+ 7 kz
- J

4. 2. REPERES DE L’ESPACE

Définition 14. NN
Un repére de I'espace est la donnée d'un point O est d'une base (i , j, k).
On note alors (O; i , j , k) ce repére, et on dit que O en est |'origine.

(_(Propriété 11. (Coordonnées, abscisse, ordonnée, cote d'un point))

- = —
Soit (O; i, j, k) un repére de I'espace.

Alors pour tout point M, il existe un unique triplet (x;y; z) de réels tels que OM =z i +yj +zk.
Le triplet (x;y; z) est appelé coordonnées de M.
On dit que z est I'abscisse de M, que y est son ordonnée, et que z est sa cote.

(&




Propriété 12. )
/ : , N

7 77
. - = N ) .
Soit (O; i, j, k) un repére de |'espace et soient U |y| et ¥ [y | deux vecteurs, et A(za;ya;24) et

z VA

9

B(xp;yp; zp) deux points de |'espace. On a alors :

Ip —TA
= Le vecteur A§ a pour coordonnées A§ YB — YA
ZB — ZA

= Le milieu M du segment [AB] a pour coordonnées M (xA ; xB; va ;— yB; A ;— ZB).

- /

Exemple 17. N
On considére un repére de l'espace (O; i, j , k) et les quatre points A(—3;6;7), B(—4;5;2), C(—3;4;3) et
D(1;—2;3) dans cette base. Prouver que les points A, B, C et D sont coplanaires.
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