
Chapitre 2 : Dérivation et convexité

1. Rappels
1. 1. Tangente à une courbe

Définition 1.
Soit f une fonction définie sur un intervalle I et dérivable en a ∈ I.
La tangente T à la courbe Cf représentative de la fonction f au point A
d’abscisse a est la droite passant par A et de coefficient directeur f ′(a).

L’équation réduite de la tangente à la courbe Cf au point d’abscisse a est

y = f ′(a)(x− a) + f(a)

Propriété 1.
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y = f ′(a)(x − a) + f(a)

Exemple 1.
On considère la fonction du second degré f définie sur R par f(x) = x2 + 3x− 1.
Déterminer une équation de la tangente à la courbe représentative de f au point d’abscisse x = 2.

1. 2. Dérivées des fonctions usuelles

Fonction Fonction f Fonction dérivée f ′ f étant dérivable sur

Constante f(x) = k avec k ∈ R 0 R

Affine f(x) = mx+ p avec m, p ∈ R m R

Carrée f(x) = x2 2x R

Puissance f(x) = xn (n ∈ N∗) nxn−1 R

Inverse f(x) =
1

x
− 1

x2
]−∞; 0[ et ]0;+∞[

Racine carrée f(x) =
√
x

1

2
√
x

]0;+∞[

Exponentielle f(x) = ex ex R

f(x) = ekx kekx R

Propriété 2.



Exemple 2.

1. 3. Opérations sur les fonctions dérivées

Soit u et v deux fonctions dérivables sur un intervalle I.

u+ v est dérivable sur I (u+ v)′ = u′ + v′

ku est dérivable sur I (où k ∈ R) (ku)′ = ku′

u× v est dérivable sur I (uv)′ = u′v + uv′
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)′

= − u′
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v
est dérivable sur I, où v ne s’annule pas sur I

(u
v

)′

=
u′v − uv′

v2

Propriété 3.

Exemple 3.



1. 4. Application à l’étude des variations d’une fonction

Soit f une fonction dérivable sur un intervalle I de R.
• Si pour tout x de I, f ′(x) ⩾ 0, alors f est croissante sur I.
• Si pour tout x de I, f ′(x) ⩽ 0, alors f est décroissante sur I.
• Si pour tout x de I, f ′(x) = 0, alors f est constante sur I.

Théorème 4.

Exemple 4. Étudier le sens de variation de la fonction g définie sur R par g(x) = x3 +
9

2
x2 − 12x+ 5.

2. Approfondissements sur les dérivées
2. 1. Dérivée d’une composée de fonction

Définition 2. Soit u une fonction définie sur un intervalle I à valeurs dans un intervalle J et v une fonction définie
sur un intervalle J .
La fonction composée de u par v, notée v ◦ u, est la fonction définie sur I par :

(v ◦ u)(x) = v (u (x))

Exemple 5.

Remarque 1. Ne pas confondre v ◦ u et u ◦ v.



Soit u une fonction définie et dérivable sur I à valeurs dans J , et v une fonction définie et dérivable sur J .
Alors la fonction v ◦ u est dérivable sur I et pour tout x ∈ I :

(v ◦ u)
′
(x) = v′ (u(x))× u′(x)

Propriété 5.

Cas particuliers importants

Fonction Dérivée Exemple
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Propriété 6.

Démonstration 1.

Remarque 2.



2. 2. Dérivée seconde
Définition 3.
Soit f une fonction dérivable sur un intervalle I. On note f ′ sa fonction dérivée.
Lorsque f ′ est dérivable sur I, on note f ′′ sa dérivée.
f ′′ est appelée la dérivée seconde de f sur I.

3. Convexité d’une fonction
3. 1. Fonctions convexes

Définition 4.
Soit f une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère.
• La fonction f est convexe sur I si, sur I, la courbe C est entièrement au-dessus de chacune de ses tangentes.
• La fonction f est concave sur I si, sur I, la courbe C est entièrement au-dessous de chacune de ses tangentes.

Exemple 6. Parmi les fonctions usuelles, on a :
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Remarque 3. Une fonction f est convexe si et seulement si tout segment reliant deux points de la courbe est au-dessus
de la courbe.

3. 2. Point d’inflexion
Définition 5. Soit f une fonction dérivable sur un intervalle I et C sa courbe représentative dans un repère. Le point
A de C est un point d’inflexion de C si, au point A, la courbe C traverse sa tangente en A.

Remarque 4. La courbe C d’une fonction f dérivable admet un point d’inflexion en A d’abscisse a quand la fonction
f change de convexité c’est-à-dire passe de convexe à concave ou de concave à convexe en a.

Exemple 7.

Soit f la fonction définie sur [−2; 4]. On a tracé ci-contre Cf la courbe représentative
de la fonction f .
A l’aide du graphique, donner la convexité de f et préciser les coordonnées d’un point
d’inflexion éventuel.
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4. Convexité d’une fonction et dérivée
4. 1. Convexité et sens de variation de f ′

Soit f une fonction dérivable sur un intervalle I.
• f est convexe sur I si, et seulement si, f ′ est croissante sur I.
• f est concave sur I si, et seulement si, f ′ est décroissante sur I

Propriété 7.

Exemple 8.
On considère une fonction f dérivable sur [−2; 5] et telle que la dérivée f ′ admet le tableau de variations suivant :

x

variations
de f ′

−2 1 3 5

11

33

Indiquer la convexité de la fonction f sur [−2; 5] et l’existence pour la courbe de f de points d’inflexion.

4. 2. Convexité et signe de f ′′

Soit f une fonction deux fois dérivable sur un intervalle I.
• f est convexe sur I si, et seulement si f ′′ est positive sur I.
• f est concave sur I si, et seulement si f ′′ est négative sur I.

Propriété 8.

Remarque 5. En effet,
− Dire que f ′′ est positive sur I signifie que f ′ est croissante sur I, c’est-à-dire que f est convexe sur I.
− Dire que f ′′ est négative sur I signifie que f ′ est décroissante sur I, c’est-à-dire que f est concave sur I.

Remarque 6. 1

−
−

Exemple 9.
Soit f la fonction définie sur R par f(x) = −x3 + x2.

1 Déterminer f ′ la fonction dérivée de la fonction f .

2 Déterminer f ′′ la fonction dérivée seconde de la fonction f .

3 (a) Étudier le signe de f ′′(x) selon les valeurs de x.



(b) Compléter le tableau ci-dessous :
x

signe de
f ′′(x)

variations
de f ′

convexité
de f

4. 3. Point d’inflexion et dérivée seconde

Soit f une fonction deux fois dérivable sur un intervalle I.
La courbe de f admet un point d’inflexion au point d’abscisse a si et seulement si f ′′ s’annule et change de signe
en a.

Propriété 9.

Exemple 10. Reprendre les résultats de l’exemple 4 et préciser les coordonnées de(s) point(s) d’inflexion éventuel(s).

Exemple 11.
Soit f la fonction définie sur [0; 18] par f(x) = x3 − 24x2 + 217x+ 200.
On admet que f est croissante sur [0; 18]. Soit Cf la courbe représentative de la fonction f .

1 Déterminer f ′ la fonction dérivée de la fonction f .
2 Déterminer f ′′ la fonction dérivée seconde de la fonction f .
3 Construire un tableau (4 lignes)

(a) Étudier le signe de f ′′(x) selon les valeurs de x.
(b) Donner les variations de la fonction f ′.
(c) En déduire la convexité de f .

4 (a) Préciser les coordonnées des points d’inflexion éventuels.
(b) Interpréter graphiquement.

5 Interpréter les résultats de la 3 en terme de rythme de croissance.
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