
Chapitre 1 : Suites et raisonnement par récurrence

1. Rappels

Suites arithmétiques Suites géométriques

Définition.
• (un) est une suite arithmétique si, et seulement si, il

existe un réel r tel que, pour tout entier naturel n,

• (un) est une suite arithmétique si, et seulement si, la
suite

Définition.
• (un) est une suite géométrique si, et seulement si, il

existe un réel q tel que, pour tout entier naturel n,

• Si la suite (un) ne s’annule pas, (un) est une suite
géométrique si, et seulement si, la suite

Expression de (un) en fonction de n.
• Si la suite (un) est arithmétique de premier terme u0

et de raison r, pour tout entier naturel n,

• Pour tous entiers naturels n et p,

Expression de (un) en fonction de n.
• Si la suite (un) est géométrique de premier terme u0

et de raison q, pour tout entier naturel n,

• Pour tous entiers naturels n et p,

Somme de termes consécutifs.
• Pour tout entier naturel n,

• Pour tous entiers naturels n et p tels que p ⩽ n,

Somme de termes consécutifs.
• Pour tout entier naturel n et tout nombre réel q,

• Pour tous entiers naturels n et p tels que p ⩽ n,



2. Raisonnement par récurrence

Soit n0 ∈ N. On considère une proposition P (n) définie pour tout entier n ⩾ n0.
Si la proposition P (n) vérifie les deux conditions suivantes :

— Initialisation : P (n0) est vraie
— Hérédité : Pour tout entier naturel k ⩾ n0, « P (k) est vraie » implique « P (k + 1) est vraie »

Alors on peut conclure que, pour tout entier naturel n ⩾ n0, la proposition P (n) est vraie.

Théorème 1. Principe du raisonnement par récurrence

Exemple 1. On considère la suite (un) définie par u0 = 1 et pour tout entier naturel n, un+1 = 2un + 1.
Démontrer par récurrence que pour tout entier naturel n, un = 2n+1 − 1.

Solution

Pour tout n ∈ N, on note :

P(n) : un = 2n+1 − 1

Pour n = 0, on a d’une part u0 = 1.
D’autre part, 20+1 − 1 = 2− 1 = 1.
On a bien égalité donc on a démontré que P(0) est vraie.

Soit k ∈ N tel que P(k) est vraie.
Autrement dit, on suppose que uk = 2k+1 − 1.
On veut alors démontrer que P(k+1) est vraie, c’est-à-dire
que uk+1 = 2(k+1)+1 − 1.

uk+1 = 2uk + 1

= 2× (2k+1 − 1) + 1

(par hypothèse de récurrence)
= 2(k+1)+1 − 2 + 1

= 2(k+1)+1 − 1

Par conséquent, P (k + 1) est vraie.

Par le principe de récurrence, on en déduit que
pour tout entier naturel n, un = 2n+1 − 1

Description des étapes de la solution

Étape 1. On écrit explicitement la propriété à démontrer
sans oublier de préciser explicitement les valeurs de n pour
lesquelles la propriété va être démontrée.

Étape 2 (initialisation).
On vérifie que la propriété à démontrer est vraie pour la
première valeur de n envisagée, c’est-à-dire ici n = 0.

Étape 3 (hérédité).
On se donne un entier k fixé mais quelconque, supérieur
ou égal à la valeur initiale, c’est-à-dire ici 0, grâce à la
phrase « Soit k ∈ N ».
On décrit explicitement le travail à effectuer : on suppose
la propriété vraie au rang k et sous cette hypothèse, on la
démontre au rang suivant k + 1.
Puis on effectue ce travail.

Étape 4 (conclusion). On énonce de nouveau le résultat
qu’on a maintenant démontré et on encadre ce résultat.



Exemple 2. Démontrer par récurrence que, pour tout n ∈ N, 1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.



Remarque 1. L’initialisation est indispensable sinon on peut démontrer des propriétés fausses !

Démontrons par exemple que la propriété « 2n est divisible par 3 » est héréditaire sans vérifier l’initialisation.
Supposons qu’il existe un entier k tel que 2k est divisible par 3.
2k+1 = 2k × 2 = 3p× 2, où p est un entier (d’après l’hypothèse de récurrence)

= 6p
Par conséquent, 2k+1 est divisible par 3.
L’hérédité est vérifiée et pourtant la propriété n’est jamais vraie.

2. 1. Inégalité de Bernoulli

Pour tout réel a strictement positif et pour tout entier naturel n, on a (1 + a)n ⩾ 1 + na

Propriété 2.

Démonstration 1.



3. Comportement global d’une suite
3. 1. Suites monotones

Définition 1.
• Une suite (un) est croissante si pour tout entier naturel n, un+1 ⩾ un.
• Une suite (un) est décroissante si pour tout entier naturel n, un+1 ⩽ un.
• Une suite (un) est constante si pour tout entier naturel n, un+1 = un.
• Une suite croissante ou décroissante est dite monotone.

On a trois méthodes pour étudier le sens de variation d’une suite (un) :

• Méthode algébrique : on compare directement, pour tout entier n, les termes consécutifs un+1 et un :
— soit étudier le signe de la différence un+1 − un

— soit étudier si un+1

un
⩾ 1 ou un+1

un
⩽ 1 si pour tout entier n, un > 0.

• Méthode fonctionnelle : Si (un) est une suite définie explicitement par un = f(n), où f est une fonction définie
sur R+, alors (un) et f ont le même sens de variation :

— si f est croissante, alors la suite (un) est croissante.
— si f est décroissante, alors la suite (un) est décroissante.

• Méthode de raisonnement par récurrence : elle s’applique si (un) est définie par une relation de récurrence du
type un+1 = f(un), et consiste à démontrer que l’une des propriétés P (n) : un+1 ⩽ un ou P (n) : un+1 ⩾ un est
vraie pour tout entier naturel n.

Propriété 3.

Exemple 3. En adoptant la bonne stratégie, étudier le sens de variation des suites définies par les expressions :
a. un = n2 − n+ 2 b. un =

2n

3n
c. un =

3n− 2

n+ 1
d. un = −1

3
n+ 3

e. (un) définie par u0 = 1 et pour n ⩾ 0, un+1 = 2un + 3 f. un = (n− 5)2

g. (un) définie par u0 = 80 et pour n ⩾ 0, un+1 = 0, 5un + 30 h. un = −
(
1

2

)n

3. 2. Suites majorées, minorées et bornées
Définition 2. On dit qu’une suite (un) définie sur N est :

• majorée s’il existe un réel M tel que, pour tout entier naturel n, un ⩽ M .
M est appelé un majorant de (un).

• minorée s’il existe un réel m tel que, pour tout entier naturel n, un ⩾ M .
m est appelé un minorant de (un).

• bornée si elle est à la fois majorée et minorée.

Remarque 2. La plupart du temps, pour montrer qu’une suite est majorée, minorée ou bornée, on utilise le raisonnement
par récurrence, mais il arrive que certaines inégalités à déterminer soit triviales, comme le montre l’exemple suivant.

Exemple 4.



3. 3. Un exemple type BAC
Soit (an) la suite définie pour n ⩾ 1 par : {

a1 = 0, 5
an+1 = 0, 5an + 0, 3

Démontrer par récurrence que, pour tout entier naturel n ⩾ 1, on a 0 ⩽ an ⩽ 0, 6.



4. Programmer des suites sur calculatrice et en Python
Supposons qu’on ait une suite définie par récurrence sous la forme un+1 = f(un) et qu’on veuille calculer le terme de
rang n. Si l’on cherche par exemple à calculer u500, il faudra avoir les 499 termes précédents, ce qui peut s’avérer long,
très très long... Heureusement, les outils numériques nous sont d’une grande aide !

Exemple 5. Calculer et représenter des termes d’une suite à la calculatrice

On considère la suite définie par u0 = 0, 1 et un+1 = 4un(1− un) pour tout n ∈ N.
On sélectionne la fonctionnalité Suites en utilisant les flèches directionnelles.

Ensuite, on sélectionne un+1 et on complète la suite voulue.
Pour obtenir un, on utilise la touche boîte à outils.

En utilisant les touches directionnelles, on peut maintenant sélectionner les onglets Tableau et Graphique.

Exemple 6. Afficher les termes d’une suite et déterminer un seuil avec Python

On considère la suite définie par u0 = 50 et un+1 = 0, 95un + 3 pour tout n ∈ N.
1 Écrire un programme Python permettant d’afficher les 20 premiers termes de la suite (un).
2 Écrire un programme Python permettant de déterminer le rang du premier terme strictement supérieur à 55.
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