
Correction Devoir Surveille N°8 (2h)

Dans tout le devoir, un soin particulier doit être apporté à la rédaction et aux justifications.

Exercice 1 - Équation différentielle accueillante (1 point)
1. Résoudre l’équation différentielle (E) : y′ = 10y.

Les solutions de (E) sont les fonctions définies sur R par :

x 7→ Ce10x, où C ∈ R

2. Déterminer la solution f de (E) telle que f(2) = 3.
De plus,

f (2) = 3 ⇐⇒ Ce10×2 = 3 ⇐⇒ C = 3e−20

En conclusion, la solution recherchée est la fonction f définie sur R par f(x) = 3e−20e10x = 3e10x−20 .

Exercice 2 - Équation différentielle sympathique (2 points)
1. Résoudre l’équation différentielle (E) : y′ + 2y = 3.

y′ + 2y = 3 ⇐⇒ y′ = −2y + 3

On est dans la cas où a = −2 et b = 3.
On en déduit que les solutions de (E) sont les fonctions définies sur R par :

x 7→ Ce−2x +
3

2
, où C ∈ R

2. Déterminer la solution f de (E) telle que f ′(0) = 2.
Pour tout x ∈ R,

f ′(x) = −2Ce−2x

Ainsi, on a :
f ′(0) = 2 ⇐⇒ −2Ce−2×0 = 2 ⇐⇒ −2C = 2 ⇐⇒ C = −1

En conclusion, la solution recherchée est la fonction f définie sur R par f(x) = −e−2x +
3

2
.

Exercice 3 - Équation différentielle enquiquinante (3 points)
On considère l’équation différentielle (E) :

y′ − 2y = xex

où y est une fonction définie et dérivable sur R.
1. Déterminer les réels a et b tels que la fonction u définie sur R par u(x) = (ax+ b)ex soit une solution de (E).

Soit u la fonction définie sur R par u(x) = (ax+ b)ex.
Alors u est dérivable sur R et, pour tout x ∈ R,

u′(x) = a× ex + (ax+ b)ex

u′(x) = (ax+ a+ b)ex

Ainsi, u est une solution de (E) si, et seulement si :
∀x ∈ R, u′(x)− 2u(x) = xex ⇐⇒ ∀x ∈ R, (ax+ a+ b)ex +−2(ax+ b)ex = xex

⇐⇒ ∀x ∈ R, (−ax+ a− b)ex = xex

⇐⇒ ∀x ∈ R, −ax+ a− b = x car ex 6= 0 pour tout x ∈ R

⇐⇒
{

−a = 1 par identification des coefficients
a− b = 0

⇐⇒
{

a = −1
b = −1

Finalement, pour tout x ∈ R, u(x) = (−x− 1)ex .



2. En déduire toutes les solutions de (E).
Les solutions de (E) sont composées de la somme d’une solution particulière de (E) et des solutions générales
de l’équation sans second membre y′ − 2y = 0.
On en déduit que les solutions de (E) sont les fonctions définies sur R par :

x 7→ (−x− 1)ex + Ce2x, où C ∈ R

3. Déterminer la solution de (E) qui s’annule en 0.
De plus,

f (0) = 0 ⇐⇒ (−0− 1)e0 + Ce2×0 = 0 ⇐⇒ −1 + C = 0 ⇐⇒ C = 1

En conclusion, la solution recherchée est la fonction f définie sur R par f(x) = (−x− 1)ex + e2x .

Exercice 4 - Équation différentielle abominable (4 points)

On cherche s’il existe une fonction f dérivable sur R vérifiant les propriétés suivantes : (1) : Pour tout x ∈ R, (f ′(x))2 − (f(x))2 = 1
(2) : f ′(0) = 1
(3) : f ′ est dérivable sur R

1. (a) Démontrer que, pour tout réel x, f ′(x) 6= 0.
Supposons par l’absurde qu’il existe un réel x0 tel que f (x0) = 0.
En remplaçant dans la relation (1), on aurait alors :(

f ′(x0)
)2 − (f(x0))

2 = 1 ⇐⇒ − (f(x0))
2 = 1 ⇐⇒ (f(x0))

2 = −1

Le carré d’un nombre réel étant un nombre positif, on obtient une absurdité.
Ainsi, pour tout réel x, f ′(x) 6= 0 .

(b) Démontrer que f(0) = 0.
D’après la relation (1), (

f ′(0)
)2 − (f(0))2 = 1

Or, d’après la relation (2), f ′(0) = 1 donc :

1− (f(0))2 = 1 ⇐⇒ f(0) = 0

2. En dérivant chaque membre de l’égalité (1), démontrer que, pour tout réel x, f ′′(x) = f(x).
En dérivant la relation (1), on obtient que, pour tout x ∈ R,

2f ′(x)f ′′(x)− 2f(x)f ′(x) = 0 ⇐⇒ 2f ′(x)
(
f ′′(x)− f(x)

)
= 0

Or, on a démontré que f ′ ne s’annule pas sur R donc, pour tout x ∈ R,

f ′′(x)− f(x) = 0 ⇐⇒ f ′′(x) = f(x)

3. On pose
{

u = f ′ + f
v = f ′ − f

.

(a) Calculer u(0) et v(0).
u(0) = f ′(0) + f(0) = 1 + 0 = 1 .
v(0) = f ′(0)− f(0) = 1− 0 = 1 .

(b) Démontrer que u′ = u et v′ = −v.
En utilisant la question 2., on en déduit que, pour tout x ∈ R,

u′(x) = f ′′(x) + f ′(x) = f(x) + f ′(x) = u(x)

v′(x) = f ′′(x)− f ′(x) = f(x)− f ′(x) = −(f ′(x)− f(x)) = −v′(x)

On a donc bien u′ = u et v′ = −v .



(c) En déduire les expressions de u et v en résolvant les équations différentielles précédentes.
Les solutions de l’équation différentielle u′ = u sont les fonctions définies sur R par :

x 7→ Cex, où C ∈ R

De plus, on a :
u(0) = 1 ⇐⇒ Ce0 = 1 ⇐⇒ C = 1

En conclusion, la solution recherchée est la fonction u définie sur R par u(x) = ex .
Les solutions de l’équation différentielle v′ = −v sont les fonctions définies sur R par :

x 7→ Ce−x, où C ∈ R

De plus, on a :
v(0) = 1 ⇐⇒ Ce−0 = 1 ⇐⇒ C = 1

En conclusion, la solution recherchée est la fonction v définie sur R par v(x) = e−x .
(d) Déduire des questions précédentes que, pour tout réel x, on a :

f(x) =
ex − e−x

2

D’après la question 3., on a pour tout x ∈ R,{
u(x) = f ′(x) + f(x)
v(x) = f ′(x)− f(x)

Par soustraction, on obtient alors, pour tout x ∈ R,

u(x)− v(x) = 2f(x) ⇐⇒ f(x) =
u(x)− v(x)

2

⇐⇒ f(x) =
ex − e−x

2



Exercice 5 - ... et un peu de géométrie ! (10 points)
Dans l’espace rapporté à un repère orthonormé

(
O ;

−→
ı ,

−→
ȷ ,

−→
k
)

, on considère :

• le plan P1 dont une équation cartésienne est 2x+ y − z + 2 = 0,

• le plan P2 passant par le point B(1; 1; 2) et dont un vecteur normal est
−→
n2

 1
−1
1

.

1. (a) Donner les coordonnées d’un vecteur
−→
n1 normal au plan P1.

Le vecteur
−→
n1

 2
1
−1

 est normal au plan P1 d’équation 2x+ y − z + 2 = 0.

(b) Montrer que les plans P1 et P2 sont perpendiculaires.
Comme le repère est orthonormé, on a :

−→
n1 ·

−→
n2 = 2× 1 + 1× (−1) + (−1)× 1 = 0

On en déduit que les vecteurs
−→
n1 et

−→
n2 sont orthogonaux.

En conclusion, les plans P1 et P2 sont perpendiculaires .

2. (a) Déterminer une équation cartésienne du plan P2.
−→
n2

 1
−1
1

 est un vecteur normal au plan P2 donc il a une équation cartésienne de la forme

x− y + z + d = 0

De plus, B(1; 1; 2) ∈ P2 donc :

xB − yB + zB + d = 0 ⇐⇒ 1− 1 + 2 + d = 0 ⇐⇒ d = −2

En conclusion, le plan P2 a pour équation cartésienne x− y + z − 2 = 0 .
(b) On note ∆ la droite dont une représentation paramétrique est :

x = 0
y = −2 + t
z = t

, t ∈ R

Montrer que la droite ∆ est l’intersection des plans P1 et P2.
Méthode 1 :
L’idée est de passer une des variables x, y ou z en paramètre.
Faisons ici le choix de poser z = t comme l’énoncé le suggère.

M(x; y; z) ∈ ∆ ⇐⇒


2x+ y − z + 2 = 0
x− y + z − 2 = 0
z = t

⇐⇒


2x+ y − t+ 2 = 0
x− y + t− 2 = 0
z = t

⇐⇒


3x = 0 L1 + L2

x− y + t− 2 = 0
z = t

⇐⇒


x = 0
−y + t− 2 = 0
z = t

⇐⇒


x = 0
y = 2− t
z = t



On en déduit que la droite ∆, intersection des plans P1 et P2, a pour représentation paramétrique
x = 0
y = −2 + t
z = t

, t ∈ R

Méthode 2 :
On peut également montrer que la droite ∆ est incluse dans P1 et également dans P2.
En effet, on a démontré que ces deux plans étaient sécants, ils sont donc sécants suivant une droite qui
appartient simultanément aux deux plans et cette droite est unique.
Pour tout t ∈ R, 2× 0 + (−2 + t)− t+ 2 = 0 donc ∆ est contenue dans le plan P1.
Pour tout t ∈ R, 0− (−2 + t) + t− 2 = 0 donc ∆ est contenue dans le plan P2.
En conclusion, la droite ∆ a bien pour représentation paramétrique

x = 0
y = −2 + t
z = t

, t ∈ R

On considère le point A(1; 1; 1) et on admet que le point A n’appartient ni à P1 ni à P2.
On note H le projeté orthogonal du point A sur la droite ∆.

3. On rappelle que, d’après la question 2. b, la droite ∆ est l’ensemble des points Mt de coordonnées (0;−2+ t; t),
où t désigne un nombre réel quelconque.

(a) Montrer que, pour tout réel t, AMt =
√
2t2 − 8t+ 11.

−−→
AMt

xMt − xA
yMt − yA
zMt − zA

 ⇐⇒

 0− 1
−2 + t− 1

t− 1

 ⇐⇒

 −1
t− 3
t− 1


On a donc :

AMt =
√
(−1)2 + (t− 3)2 + (t− 1)2

=
√
1 + t2 − 6t+ 9 + t2 − 2t+ 1

AMt =
√
2t2 − 8t+ 11

(b) En déduire que AH =
√
3.

Le point H est le projeté orthogonal de A sur la droite ∆, donc la longueur AH réalise le minimum des
longueurs AMt où Mt est un point de ∆.
Il faut donc chercher le minimum de la fonction f définie sur R par f(t) =

√
2t2 − 8t+ 11.

Cette fonction est dérivable sur R et, pour tout t ∈ R,

f ′(t) =
4t− 8

2
√
2t2 − 8t+ 11

Pour tout t ∈ R, 2
√
2t2 − 8t+ 11 > 0 donc f ′(t) est du même signe que 4t− 8.

De plus, 4t− 8 ⩾ 0 ⇐⇒ 4t ⩾ 8 ⇐⇒ t ⩾ 2.
On peut donc en déduire le signe de f ′ et les variations de f sur R.

t

f ′(t)

f(t)

−∞ 2 +∞

− 0 +

√
3

√
3



Ainsi, le minimum de de la fonction f est atteint en t = 2 et ce minimum vaut

f(2) =
√
2× 22 − 8× 2 + 11 =

√
3

On en déduit alors que AH =
√
3 .

4. On note D1 la droite orthogonale au plan P1 passant par le point A et H1 le projeté orthogonal du point A sur
le plan P1.

(a) Déterminer une représentation paramétrique de la droite D1.
La droite D1 est orthogonale au plan P1 donc le vecteur −→n1 est un vecteur directeur de la droite D1.
De plus la droite D1 passe par le point A(1; 1; 1) donc elle a pour représentation paramétrique :

x = 2t+ 1
y = t+ 1
z = −t+ 1

, t ∈ R

(b) En déduire que le point H1 a pour coordonnées
(
−1

3
;
1

3
;
5

3

)
.

H1 est le projeté orthogonal du point A sur le plan P1 donc H1 ∈ D1 ∩ P1.
Par conséquent, il existe t ∈ R tel que :

xH1 = 2t+ 1
yH1 = t+ 1
zH1 = −t+ 1
2xH1 + yH1 − zH1 + 2 = 0

On a donc :

2(2t+ 1) + t+ 1− (−t+ 1) + 2 = 0

⇐⇒ 4t+ 2 + t+ 1 + t− 1 + 2 = 0

⇐⇒ 6t+ 4 = 0

⇐⇒ t = −2
3

On en déduit que : 
xH1 = 2×

(
−2

3

)
+ 1 = −1

3
yH1 = −2

3 + 1 = 1
3

zH1 = −
(
−2

3

)
+ 1 = 5

3

En conclusion, le point H1 a pour coordonnées H1

(
−1

3 ;
1
3 ;

5
3

)
.

5. Soit H2 le projeté orthogonal de A sur le plan P2.
On admet que les coordonnées des points H et H2 sont :

H2

(
4

3
;
2

3
;
4

3

)
et H(0; 0; 2)

Sur le schéma ci-contre, les plans P1 et P2 sont représentés,
ainsi que les points A, H1, H2 et H.
Montrer que AH1HH2 est un rectangle.

−−→
H1A

1−
(
−1

3

)
1− 1

3
1− 5

3

 −−→
H1A

 4
3
2
3
−2

3


−−−→
HH2

4
3 − 0
2
3 − 0
4
3 − 2

 −−−→
HH2

 4
3
2
3
−2

3


−−→
H1A =

−−−→
HH2 donc AH1HH2 est un parallélogramme.

De plus, les plans P1 et P2 dont perpendiculaires donc
le parallélogramme AH1HH2 possède un angle droit.
En conclusion, AH1HH2 est un rectangle .

∆

P2

P1

H
H2

A
H1


