
Correction Devoir Surveille N°1 (30min)

Dans tout le devoir, un soin particulier doit être apporté à la rédaction et aux justifications.

Exercice 1

On considère la suite (un) définie sur N par : {
u0 = 7
un+1 = 2un − 3

Démontrer, à l’aide d’un raisonnement par récurrence, que pour tout n ∈ N,

un = 2n+2 + 3

• Pour tout n ∈ N, on pose :
P (n) : un = 2n+2 + 3

• Initialisation :
Pour n = 0, on a 20+2 + 3 = 4 + 3 = 7 = u0 donc P (0) est vraie.

• Hérédité :
Soit k ∈ N tel que P (k) est vraie. Autrement dit, on suppose que uk = 2k+2 + 3.
On veut démontrer que P (k + 1) est vraie, c’est-à-dire que uk+1 = 2(k+1)+2 + 3 = 2k+3 + 3.
On a :

uk+1 = 2uk − 3

= 2(2k+2 + 3)− 3 d’après l’hypothèse de récurrence
= 2× 2k+2 + 2× 3− 3

= 2k+3 + 3

Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que, pour tout n ∈ N,

un = 2n+2 + 3



Exercice 2

Démontrer, à l’aide d’un raisonnement par récurrence, que pour tout entier n ⩾ 1, on a :
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• Pour tout n ∈ N∗, on pose :
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• Initialisation :
Pour n = 1, le terme de gauche vaut 1
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et le terme de droite vaut 1
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On a bien égalité donc P (1) est vraie.

• Hérédité :
Soit k ∈ N∗ tel que P (k) est vraie.
Autrement dit, on suppose que
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On veut démontrer que P (k + 1) est vraie, c’est-à-dire :
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On a :
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Par conséquent, P(k + 1) est vraie.

• Conclusion :
Par le principe de récurrence, on a démontré que, pour tout entier n ⩾ 1,
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